No rationale for 1 variable per 10 events criterion for binary logistic regression analysis

BMC Medical Research Methodology - Tập 16 Số 1 - 2016
Maarten van Smeden1, Joris A. H. de Groot1, Henning Müller1, Gary S. Collins2, Douglas G. Altman2, Marinus J.C. Eijkemans1, Johannes B. Reitsma1
1Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
2Centre for Statistics in Medicine, Botnar Research Centre, University of Oxford, Oxford, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Harrell FE, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Stat Med. 1984; 3(2):143–52.

Harrell FE. Regression Modeling Strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001.

Steyerberg EW. Clinical Prediction Models. Statistics for Biology and Health. New York: Springer; 2009.

Gart J, Zweifel J. On the Bias of Various Estimators of the Logit and Its Variance with Application to Quantal Bioassay, Vol. 1; 1967. pp. 181–7.

Jewell N. Small-sample Bias of Point Estimators of the Odds Ratio from Matched Sets. Biometrics. 1984; 40(2):421–35.

Nemes S, Jonasson J, Genell A, Steineck G. Bias in odds ratios by logistic regression modelling and sample size. BMC Med Res Method. 2009; 9(1):56.

Altman DG, Royston P. What do we mean by validating a prognostic model?Stat Med. 2000; 19(4):453–73.

Vergouwe Y, Steyerberg EW, Eijkemans MJ, Habbema JDF. Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. J Clin Epidemiol. 2005; 58(5):475–83.

Moons KGM, de Groot JAH, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, Reitsma JB, Collins GS. Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist. PLoS Med. 2014; 11(10):e1001744.

Moons KGM, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Ann Int Med. 2015; 162(1):W1–W73.

Pavlou M, Ambler G, Seaman SR, Guttmann O, Elliott P, King M, Omar RZ. How to develop a more accurate risk prediction model when there are few events. BMJ. 2016; 353:i3235.

Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996; 49(12):1373–9.

Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol. 2007; 165(6):710–8.

Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. J Clin Epidemiol. 2011; 64(9):993–1000.

Bull SB, Greenwood CMT, Hauck WW. Jacknife bias reduction for polychotomous logistic regression. Stat Med. 1997; 16(5):545–60.

Albert A, Anderson J. On the existence of maximum likelihood estimates in logistic regression models. Biometrika. 1984; 71(1):1–10.

Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Stat Med. 2002; 21(16):2409–19.

Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Stat Med. 2006; 25(24):4216–26.

Steyerberg EW, Schemper M, Harrell FE. Logistic regression modeling and the number of events per variable: selection bias dominates. J Clin Epidemiol. 2011; 64(12):1464–5.

Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993; 80(1):27–38.

Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Stat Med. 2006; 25(24):4279–92.

R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2003. http://www.R-project.org .

Lesaffre E, Albert A. Partial Separation in Logistic Discrimination. J R Stat Soc Series B. 1989; 51(1):109–16.

King G, Zeng L. Logistic Regression in Rare Events Data. Pol Anal. 2001; 9(2):137–63.

Cordeiro G, McCullagh P. Bias correction in generalized linear models. J R Stat Soc Series B. 1991; 53(3):629–43.

Clarkson DB, Jennrich RI. Computing Extended Maximum Likelihood Estimates for Linear Parameter Models. J R Stat Soc Series B. 1991; 53(2):417–26.

Bull SB, Lewinger JP, Lee SSF. Confidence intervals for multinomial logistic regression in sparse data. Stat Med. 2007; 26(4):903–18.

Bull SB, Mak C, Greenwood CMT. A modified score function estimator for multinomial logistic regression in small samples. Comput Stat Data Anal. 2002; 39:57–74.

Steyerberg EW, Eijkemans MJ, Harrell FE, Habbema JDF. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Stat Med. 2000; 19(8):1059–79.

Ambler G, Brady AR, Royston P. Simplifying a prognostic model: a simulation study based on clinical data. Stat Med. 2002; 21(24):3803–22.