No evidence that HLA genotype influences the driver mutations that occur in cancer patients

Springer Science and Business Media LLC - Tập 71 Số 4 - Trang 819-827 - 2022
Noor Kherreh1, Siobhán Cleary1, Cathal Seoighe1
1School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland

Tóm tắt

AbstractThe major histocompatibility (MHC) molecules are capable of presenting neoantigens resulting from somatic mutations on cell surfaces, potentially directing immune responses against cancer. This led to the hypothesis that cancer driver mutations may occur in gaps in the capacity to present neoantigens that are dependent on MHC genotype. If this is correct, it has important implications for understanding oncogenesis and may help to predict driver mutations based on genotype data. In support of this hypothesis, it has been reported that driver mutations that occur frequently tend to be poorly presented by common MHC alleles and that the capacity of a patient’s MHC alleles to present the resulting neoantigens is predictive of the driver mutations that are observed in their tumor. Here we show that these reports of a strong relationship between driver mutation occurrence and patient MHC alleles are a consequence of unjustified statistical assumptions. Our reanalysis of the data provides no evidence of an effect of MHC genotype on the oncogenic mutation landscape.

Từ khóa


Tài liệu tham khảo

Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SG (2015) The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res 43(D1):D423

Rock KL, Shen L (2005) Cross-presentation: underlying mechanisms and role in immune surveillance. Immunological Rev 207(1):166

Swann JB, Smyth MJ et al (2007) Immune surveillance of tumors. J Clinical Investig 117(5):1137

Vesely MD, Schreiber RD (2013) Cancer immunoediting: antigens, mechanisms and implications to cancer immunotherapy. Ann New York Acad Sci 1284(1):1

Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol 3(11):991

Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Ann Rev Immunol 22:329

Campoli M, Ferrone S (2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27(45):5869

Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, Stevens J, Lane WJ, Dellagatta JL, Steelman S et al (2015) Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nature Biotechnol 33(11):1152

Davoli T, Uno H, Wooten EC, Elledge SJ (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355(6322)

Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, Holt RA (2014) Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res 24(5):743

Rosenthal R, Cadieux EL, Salgado R, Al Bakir M, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K et al (2019) Neoantigen-directed immune escape in lung cancer evolution. Nature 567(7749):479

Castro A, Ozturk K, Pyke RM, Xian S, Zanetti M, Carter H (2019) Elevated neoantigen levels in tumors with somatic mutations in the HLA-A, HLA-B, HLA-C and B2M genes. BMC Medical Genomics 12(6):107

Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48

Zapata L, Pich O, Serrano L, Kondrashov FA, Ossowski S, Schaefer MH (2018) Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol 19(1):1

Van den Eynden J, Jiménez-Sánchez A, Miller ML, Larsson E (2019) Lack of detectable neoantigen depletion signals in the untreated cancer genome. Nature Genetics 51(12):1741

Marty R, Kaabinejadian S, Rossell D, Slifker MJ, van de Haar J, Engin HB, de Prisco N, Ideker T, Hildebrand WH, Font-Burgada J et al (2017) MHC-I genotype restricts the oncogenic mutational landscape. Cell 171(6):1272

Marty Pyke R, Thompson WK, Salem RM, Font-Burgada J, Zanetti M, Carter H (2018) Evolutionary pressure against MHC class II binding cancer mutations. Cell 175(2):416

Nielsen M, Andreatta M (2016) NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8(1):1

Dilthey AT, Moutsianas L, Leslie S, McVean G (2011) HLA* IMP-an integrated framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics 27(7):968

Chowell D, Krishna S, Becker PD, Cocita C, Shu J, Tan X, Greenberg PD, Klavinskis LS, Blattman JN, Anderson KS (2015) TCR contact residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes. Proc National Acad Sci 112(14):E1754

Huang L, Kuhls MC, Eisenlohr LC (2011) Hydrophobicity as a driver of MHC class I antigen processing. EMBO J 30(8):1634

Wallin KL, Wiklund F, Ångström T, Bergman F, Stendahl U, Wadell G, Hallmans G, Dillner J (1999) Type-specific persistence of human papillomavirus DNA before the development of invasive cervical cancer. New Engl J Med 341(22):1633

Beasley RP (1988) Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61(10):1942

Zur Hausen H (1991) Viruses in human cancers. Science 254(5035):1167

Spranger S, Luke JJ, Bao R, Zha Y, Hernandez KM, Li Y, Gajewski AP, Andrade J, Gajewski TF (2016) Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc National Acad Sci 113(48):E7759

Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MHG, Goldinger SM et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350(6257):207

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124

Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. New Engl J Med 371(23):2189

Yang F, Kim DK, Nakagawa H, Hayashi S, Imoto S, Stein L, Roth FP (2019) Quantifying immune-based counterselection of somatic mutations. PLoS Genetics 15(7):e1008227

Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, Network CGAR et al (2013) The cancer genome atlas pan-cancer analysis project. Nature Genetics 45(10):1113