No constraints for f(T) gravity from gravitational waves induced from primordial black hole fluctuations

The European Physical Journal C - Tập 83 Số 1 - Trang 1-16 - 2023
Papanikolaou, Theodoros1, Tzerefos, Charalampos1,2, Basilakos, Spyros1,3,4, Saridakis, Emmanuel N.1,5,6
1National Observatory of Athens, Athens, Greece
2Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
3Academy of Athens, Research Center for Astronomy and Applied Mathematics, Athens, Greece
4School of Sciences, European University Cyprus, Nicosia, Cyprus
5CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, People’s Republic of China
6Departamento de Matemáticas, Universidad Católica del Norte, Casilla, Chile

Tóm tắt

Primordial black hole (PBH) fluctuations can induce a stochastic gravitational wave background at second order, and since this procedure is sensitive to the underlying gravitational theory it can be used as a novel tool to test general relativity and extract constraints on possible modified gravity deviations. We apply this formalism in the framework of f(T) gravity, considering three viable mono-parametric models. In particular, we investigate the induced modifications at the level of the gravitational-wave source, which is encoded in terms of the power spectrum of the PBH gravitational potential, as well as at the level of their propagation, described in terms of the Green function which quantifies the propagator of the tensor perturbations. We find that, within the observationally allowed range of the f(T) model-parameters, the obtained deviations from general relativity, both at the levels of source and propagation, are practically negligible. Hence, we conclude that realistic and viable f(T) theories can safely pass the primordial black hole constraints, which may offer an additional argument in their favor.

Tài liệu tham khảo

CANTATA collaboration, E.N. Saridakis et al., Modified gravity and cosmology: an update by the CANTATA Network. arXiv:2105.12582 citation_journal_title=Phys. Rep.; citation_title=Extended theories of gravity; citation_author=S Capozziello, M Laurentis; citation_volume=509; citation_publication_date=2011; citation_pages=167-321; citation_id=CR2 citation_journal_title=Int. J. Mod. Phys. D; citation_title=Dynamics of dark energy; citation_author=EJ Copeland, M Sami, S Tsujikawa; citation_volume=15; citation_publication_date=2006; citation_pages=1753-1936; citation_id=CR3 citation_journal_title=Phys. Rep.; citation_title=Quintom cosmology: theoretical implications and observations; citation_author=Y-F Cai, EN Saridakis, MR Setare, J-Q Xia; citation_volume=493; citation_publication_date=2010; citation_pages=1-60; citation_id=CR4 citation_journal_title=Phys. Dark Univ.; citation_title=Encyclopædia Inflationaris; citation_author=J Martin, C Ringeval, V Vennin; citation_volume=5–6; citation_publication_date=2014; citation_pages=75-235; citation_id=CR5 A. Addazi et al., Quantum gravity phenomenology at the dawn of the multi-messenger era: a review. arXiv:2111.05659 citation_journal_title=Int. J. Mod. Phys. D; citation_title=Curvature quintessence; citation_author=S Capozziello; citation_volume=11; citation_publication_date=2002; citation_pages=483-492; citation_id=CR7 citation_journal_title=Phys. Rept.; citation_title=Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models; citation_author=S Nojiri, SD Odintsov; citation_volume=505; citation_publication_date=2011; citation_pages=59-144; citation_id=CR8 citation_journal_title=Phys. Lett. B; citation_title=Modified Gauss–Bonnet theory as gravitational alternative for dark energy; citation_author=S Nojiri, SD Odintsov; citation_volume=631; citation_publication_date=2005; citation_pages=1-6; citation_id=CR9 citation_journal_title=Phys. Rev. D; citation_title=The Galileon as a local modification of gravity; citation_author=A Nicolis, R Rattazzi, E Trincherini; citation_volume=79; citation_publication_date=2009; citation_id=CR10 citation_journal_title=Phys. Rep.; citation_title=Modified gravity and cosmology; citation_author=T Clifton, PG Ferreira, A Padilla, C Skordis; citation_volume=513; citation_publication_date=2012; citation_pages=1-189; citation_id=CR11 citation_title=Teleparallel Gravity: An Introduction; citation_publication_date=2013; citation_id=CR12; citation_author=R Aldrovandi; citation_author=JG Pereira; citation_publisher=Springer citation_journal_title=Class. Quantum Gravity; citation_title=Teleparallel theories of gravity: illuminating a fully invariant approach; citation_author=M Krssak, RJ Hoogen, JG Pereira, CG Böhmer, AA Coley; citation_volume=36; citation_publication_date=2019; citation_id=CR13 citation_journal_title=Rep. Prog. Phys.; citation_title=f(T) teleparallel gravity and cosmology; citation_author=Y-F Cai, S Capozziello, M Laurentis, EN Saridakis; citation_volume=79; citation_publication_date=2016; citation_id=CR14 citation_journal_title=Phys. Rev. D; citation_title=Dark torsion as the cosmic speed-up; citation_author=GR Bengochea, R Ferraro; citation_volume=79; citation_publication_date=2009; citation_id=CR15 citation_journal_title=Phys. Rev. D; citation_title=Einstein’s other gravity and the acceleration of the universe; citation_author=EV Linder; citation_volume=81; citation_publication_date=2010; citation_id=CR16 citation_journal_title=Phys. Rev. D; citation_title=Cosmological perturbations in f(T) gravity; citation_author=S-H Chen, JB Dent, S Dutta, EN Saridakis; citation_volume=83; citation_publication_date=2011; citation_id=CR17 citation_journal_title=JCAP; citation_title=Growth factor in gravity; citation_author=R Zheng, Q-G Huang; citation_volume=03; citation_publication_date=2011; citation_pages=002; citation_id=CR18 citation_journal_title=JCAP; citation_title=Equation of state for dark energy in gravity; citation_author=K Bamba, C-Q Geng, C-C Lee, L-W Luo; citation_volume=01; citation_publication_date=2011; citation_pages=021; citation_id=CR19 citation_journal_title=Class. Quantum Gravity; citation_title=Matter bounce cosmology with the f(T) gravity; citation_author=Y-F Cai, S-H Chen, JB Dent, S Dutta, EN Saridakis; citation_volume=28; citation_publication_date=2011; citation_id=CR20 citation_journal_title=Phys. Rev. D; citation_title=Cosmography in f(T)-gravity; citation_author=S Capozziello, VF Cardone, H Farajollahi, A Ravanpak; citation_volume=84; citation_publication_date=2011; citation_id=CR21 citation_journal_title=Phys. Rev. D; citation_title=Cosmological dynamics of tachyonic teleparallel dark energy; citation_author=G Otalora; citation_volume=88; citation_publication_date=2013; citation_id=CR22 citation_journal_title=Phys. Rev. D; citation_title=Conformal symmetry and accelerating cosmology in teleparallel gravity; citation_author=K Bamba, SD Odintsov, D Sáez-Gómez; citation_volume=88; citation_publication_date=2013; citation_id=CR23 citation_journal_title=Eur. Phys. J. C; citation_title=Einstein static universe in exponential gravity; citation_author=J-T Li, C-C Lee, C-Q Geng; citation_volume=73; citation_publication_date=2013; citation_pages=2315; citation_id=CR24 citation_journal_title=Phys. Rev. D; citation_title=Problems with propagation and time evolution in f(T) gravity; citation_author=YC Ong, K Izumi, JM Nester, P Chen; citation_volume=88; citation_publication_date=2013; citation_id=CR25 citation_journal_title=Phys. Rev. D; citation_title=Bounce inflation in cosmology: a unified inflaton-quintessence field; citation_author=K Bamba, GGL Nashed, W Hanafy, SK Ibraheem; citation_volume=94; citation_publication_date=2016; citation_id=CR26 citation_journal_title=Mon. Not. R. Astron. Soc.; citation_title=Spherical collapse model and cluster number counts in power law gravity; citation_author=M Malekjani, N Haidari, S Basilakos; citation_volume=466; citation_publication_date=2017; citation_pages=3488-3496; citation_id=CR27 citation_journal_title=Phys. Rev. D; citation_title=Stability of the flat FLRW metric in gravity; citation_author=G Farrugia, JL Said; citation_volume=94; citation_publication_date=2016; citation_id=CR28 citation_journal_title=Phys. Lett. B; citation_title=New classes of modified teleparallel gravity models; citation_author=S Bahamonde, CG Böhmer, M Krššák; citation_volume=775; citation_publication_date=2017; citation_pages=37-43; citation_id=CR29 citation_journal_title=Gen. Relativ. Gravit.; citation_title=Cartan symmetries and global dynamical systems analysis in a higher-order modified teleparallel theory; citation_author=L Karpathopoulos, S Basilakos, G Leon, A Paliathanasis, M Tsamparlis; citation_volume=50; citation_publication_date=2018; citation_pages=79; citation_id=CR30 citation_journal_title=Phys. Rev. D; citation_title=Effective gravitational coupling in modified teleparallel theories; citation_author=H Abedi, S Capozziello, R D’Agostino, O Luongo; citation_volume=97; citation_publication_date=2018; citation_id=CR31 citation_journal_title=Phys. Rev. D; citation_title=Growth of matter perturbations in nonminimal teleparallel dark energy; citation_author=R D’Agostino, O Luongo; citation_volume=98; citation_publication_date=2018; citation_id=CR32 citation_journal_title=Universe; citation_title=Scale transformations in metric-affine geometry; citation_author=D Iosifidis, T Koivisto; citation_volume=5; citation_publication_date=2019; citation_pages=82; citation_id=CR33 citation_journal_title=Eur. Phys. J. C; citation_title=On reconstruction of extended teleparallel gravity from the cosmological jerk parameter; citation_author=S Chakrabarti, JL Said, K Bamba; citation_volume=79; citation_publication_date=2019; citation_pages=454; citation_id=CR34 citation_journal_title=EPL; citation_title=Effects of viscous content on the modified cosmological F(T) model; citation_author=SD Sadatian; citation_volume=126; citation_publication_date=2019; citation_pages=30004; citation_id=CR35 citation_journal_title=Phys. Rev. D; citation_title=Interpreting cosmological tensions from the effective field theory of torsional gravity; citation_author=S-F Yan, P Zhang, J-W Chen, X-Z Zhang, Y-F Cai, EN Saridakis; citation_volume=101; citation_publication_date=2020; citation_id=CR36 citation_journal_title=Phys. Rev. D; citation_title=Can gravity resolve the tension?; citation_author=D Wang, D Mota; citation_volume=102; citation_publication_date=2020; citation_id=CR37 citation_journal_title=Mod. Phys. Lett. A; citation_title=Cosmic evolution in f(T) gravity theory; citation_author=A Bose, S Chakraborty; citation_volume=35; citation_publication_date=2020; citation_pages=2050296; citation_id=CR38 citation_journal_title=Phys. Dark Univ.; citation_title=Data-driven reconstruction of the late-time cosmic acceleration with f(T) gravity; citation_author=X Ren, THT Wong, Y-F Cai, EN Saridakis; citation_volume=32; citation_publication_date=2021; citation_id=CR39 citation_journal_title=Universe; citation_title=f(T, B) cosmography for high redshifts; citation_author=C Escamilla-Rivera, GA Rave-Franco, JL Said; citation_volume=7; citation_publication_date=2021; citation_pages=441; citation_id=CR40 citation_journal_title=Phys. Rev. D; citation_title=Teleparallel equivalent of Gauss–Bonnet gravity and its modifications; citation_author=G Kofinas, EN Saridakis; citation_volume=90; citation_publication_date=2014; citation_id=CR41 citation_journal_title=Phys. Rev. D; citation_title=Cosmological applications of gravity; citation_author=G Kofinas, EN Saridakis; citation_volume=90; citation_publication_date=2014; citation_id=CR42 citation_journal_title=Phys. Rev. D; citation_title=Modified teleparallel theories of gravity; citation_author=S Bahamonde, CG Böhmer, M Wright; citation_volume=92; citation_publication_date=2015; citation_id=CR43 citation_journal_title=Phys. Lett. B; citation_title=“Teleparallel” dark energy; citation_author=C-Q Geng, C-C Lee, EN Saridakis, Y-P Wu; citation_volume=704; citation_publication_date=2011; citation_pages=384-387; citation_id=CR44 citation_journal_title=Phys. Rev. D; citation_title=Covariant formulation of scalar-torsion gravity; citation_author=M Hohmann, L Järv, U Ualikhanova; citation_volume=97; citation_publication_date=2018; citation_id=CR45 citation_journal_title=Sov. Astron.; citation_title=The hypothesis of cores retarded during expansion and the hot cosmological model; citation_author=YB Zel’dovich, ID Novikov; citation_volume=10; citation_publication_date=1967; citation_pages=602; citation_id=CR46 citation_journal_title=Mon. Not. R. Astron. Soc.; citation_title=Black holes in the early Universe; citation_author=BJ Carr, SW Hawking; citation_volume=168; citation_publication_date=1974; citation_pages=399-415; citation_id=CR47 citation_journal_title=ApJ; citation_title=The primordial black hole mass spectrum; citation_author=BJ Carr; citation_volume=201; citation_publication_date=1975; citation_pages=1-19; citation_id=CR48 citation_journal_title=Nature; citation_title=Cosmological effects of primordial black holes; citation_author=GF Chapline; citation_volume=253; citation_publication_date=1975; citation_pages=251-252; citation_id=CR49 citation_journal_title=Phys. Dark Univ.; citation_title=Seven hints for primordial black hole dark matter; citation_author=S Clesse, J García-Bellido; citation_volume=22; citation_publication_date=2018; citation_pages=137-146; citation_id=CR50 citation_journal_title=Astron. Astrophys.; citation_title=Primeval black holes and galaxy formation; citation_author=P Meszaros; citation_volume=38; citation_publication_date=1975; citation_pages=5-13; citation_id=CR51 citation_journal_title=Astrophys. J. Lett.; citation_title=Primordial black holes as dark matter: the power spectrum and evaporation of early structures; citation_author=N Afshordi, P McDonald, D Spergel; citation_volume=594; citation_publication_date=2003; citation_pages=L71-L74; citation_id=CR52 B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, Constraints on primordial black holes. arXiv:2002.12778 citation_journal_title=Class. Quantum Gravity; citation_title=Primordial black holes-perspectives in gravitational wave astronomy; citation_author=M Sasaki, T Suyama, T Tanaka, S Yokoyama; citation_volume=35; citation_publication_date=2018; citation_id=CR54 citation_journal_title=Astrophys. J.; citation_title=Gravitational waves from coalescing black hole MACHO binaries; citation_author=T Nakamura, M Sasaki, T Tanaka, KS Thorne; citation_volume=487; citation_publication_date=1997; citation_pages=L139-L142; citation_id=CR55 citation_journal_title=Phys. Rev. D; citation_title=Black hole binary formation in the expanding universe: three body problem approximation; citation_author=K Ioka, T Chiba, T Tanaka, T Nakamura; citation_volume=58; citation_publication_date=1998; citation_id=CR56 citation_journal_title=J. Phys. Conf. Ser.; citation_title=Gravitational waves from primordial black holes collisions in binary systems; citation_author=YN Eroshenko; citation_volume=1051; citation_publication_date=2018; citation_id=CR57 citation_journal_title=JCAP; citation_title=Gravitational waves from primordial black hole mergers; citation_author=M Raidal, V Vaskonen, H Veermäe; citation_volume=1709; citation_publication_date=2017; citation_pages=037; citation_id=CR58 citation_journal_title=JCAP; citation_title=GUT-scale primordial black holes: mergers and gravitational waves; citation_author=JL Zagorac, R Easther, N Padmanabhan; citation_volume=1906; citation_publication_date=2019; citation_pages=052; citation_id=CR59 D. Hooper, G. Krnjaic, J. March-Russell, S.D. McDermott, R. Petrossian-Byrne, Hot gravitons and gravitational waves from Kerr Black holes in the early universe. arXiv:2004.00618 citation_journal_title=Phys. Rev. Lett.; citation_title=GUT-scale primordial black holes: consequences and constraints; citation_author=R Anantua, R Easther, JT Giblin; citation_volume=103; citation_publication_date=2009; citation_id=CR61 citation_journal_title=JCAP; citation_title=Gravitational wave production by Hawking radiation from rotating primordial black holes; citation_author=R Dong, WH Kinney, D Stojkovic; citation_volume=10; citation_publication_date=2016; citation_pages=034; citation_id=CR62 citation_journal_title=Phys. Rev. D; citation_title=Induced gravitational wave background and primordial black holes; citation_author=E Bugaev, P Klimai; citation_volume=81; citation_publication_date=2010; citation_id=CR63 R. Saito, J. Yokoyama, Gravitational-wave background as a probe of the primordial black-hole abundance. Phys. Rev. Lett. 102 (2009) T. Nakama, T. Suyama, Primordial black holes as a novel probe of primordial gravitational waves. Phys. Rev. D 92 (2015) citation_journal_title=JCAP; citation_title=Scalaron from -gravity as a heavy field; citation_author=S Pi, Y-L Zhang, Q-G Huang, M Sasaki; citation_volume=05; citation_publication_date=2018; citation_pages=042; citation_id=CR66 citation_journal_title=Phys. Rev. D; citation_title=Probing primordial-black-hole dark matter with scalar induced gravitational waves; citation_author=C Yuan, Z-C Chen, Q-G Huang; citation_volume=100; citation_publication_date=2019; citation_id=CR67 citation_journal_title=Phys. Rev. D; citation_title=Primordial black holes and gravitational waves from resonant amplification during inflation; citation_author=Z Zhou, J Jiang, Y-F Cai, M Sasaki, S Pi; citation_volume=102; citation_publication_date=2020; citation_id=CR68 citation_journal_title=JCAP; citation_title=Oscillations in the stochastic gravitational wave background from sharp features and particle production during inflation; citation_author=J Fumagalli, S Renaux-Petel, LT Witkowski; citation_volume=08; citation_publication_date=2021; citation_pages=030; citation_id=CR69 citation_journal_title=Universe; citation_title=Scalar induced gravitational waves review; citation_author=G Domènech; citation_volume=7; citation_publication_date=2021; citation_pages=398; citation_id=CR70 citation_journal_title=JCAP; citation_title=Gravitational waves from a universe filled with primordial black holes; citation_author=T Papanikolaou, V Vennin, D Langlois; citation_volume=03; citation_publication_date=2021; citation_pages=053; citation_id=CR71 citation_journal_title=JCAP; citation_title=Gravitational wave constraints on the primordial black hole dominated early universe; citation_author=G Domènech, C Lin, M Sasaki; citation_volume=04; citation_publication_date=2021; citation_pages=062; citation_id=CR72 J. Kozaczuk, T. Lin, E. Villarama, Signals of primordial black holes at gravitational wave interferometers. arXiv:2108.12475 P. Chen, S. Koh, G. Tumurtushaa, Primordial black holes and induced gravitational waves from inflation in the Horndeski theory of gravity. arXiv:2107.08638 J. Lin, S. Gao, Y. Gong, Y. Lu, Z. Wang, F. Zhang, Primordial black holes and scalar induced secondary gravitational waves from Higgs inflation with non-canonical kinetic term. arXiv:2111.01362 citation_journal_title=JCAP; citation_title=Scalar induced gravitational waves from primordial black hole Poisson fluctuations in f(R) gravity; citation_author=T Papanikolaou, C Tzerefos, S Basilakos, EN Saridakis; citation_volume=10; citation_publication_date=2022; citation_pages=013; citation_id=CR76 citation_journal_title=Phys. Rev. D; citation_title=Density perturbations and black hole formation in hybrid inflation; citation_author=J Garcia-Bellido, AD Linde, D Wands; citation_volume=54; citation_publication_date=1996; citation_pages=6040-6058; citation_id=CR77 citation_journal_title=Phys. Rev. D; citation_title=Unification models with reheating via Primordial Black Holes; citation_author=JC Hidalgo, LA Urena-Lopez, AR Liddle; citation_volume=85; citation_publication_date=2012; citation_id=CR78 J. Martin, T. Papanikolaou, V. Vennin, Primordial black holes from the preheating instability. arXiv:1907.04236 citation_journal_title=Phys. Lett. B; citation_title=Observational constraints on theory; citation_author=P Wu, HW Yu; citation_volume=693; citation_publication_date=2010; citation_pages=415-420; citation_id=CR80 citation_journal_title=Phys. Rev. D; citation_title=Accelerating f(T) gravity models constrained by recent cosmological data; citation_author=VF Cardone, N Radicella, S Camera; citation_volume=85; citation_publication_date=2012; citation_id=CR81 citation_journal_title=Phys. Rev. D; citation_title=Viable models are practically indistinguishable from CDM; citation_author=S Nesseris, S Basilakos, EN Saridakis, L Perivolaropoulos; citation_volume=88; citation_publication_date=2013; citation_id=CR82 citation_journal_title=Eur. Phys. J. C; citation_title=Observational constraints on gravity from varying fundamental constants; citation_author=RC Nunes, A Bonilla, S Pan, EN Saridakis; citation_volume=77; citation_publication_date=2017; citation_pages=230; citation_id=CR83 citation_journal_title=JCAP; citation_title=Updated constraints on models using direct and indirect measurements of the Hubble parameter; citation_author=S Basilakos, S Nesseris, FK Anagnostopoulos, EN Saridakis; citation_volume=08; citation_publication_date=2018; citation_pages=008; citation_id=CR84 citation_journal_title=Astrophys. J.; citation_title=Testing viable f(T) models with current observations; citation_author=B Xu, H Yu, P Wu; citation_volume=855; citation_publication_date=2018; citation_pages=89; citation_id=CR85 X. Ren, S.-F. Yan, Y. Zhao, Y.-F. Cai, E.N. Saridakis, Gaussian processes and effective field theory of $$f(T)$$ gravity under the $$H_0$$ tension. arXiv:2203.01926 Y. Huang, J. Zhang, X. Ren, E.N. Saridakis, Y.-F. Cai, N-body simulations, halo mass functions, and halo density profile in $$f(T)$$ gravity. arXiv:2204.06845 Y. Zhao, X. Ren, A. Ilyas, E.N. Saridakis, Y.-F. Cai, Quasinormal modes of black holes in f(T) gravity. arXiv:2204.11169 citation_journal_title=Phys. Rev. D; citation_title=Gauge invariant cosmological perturbations; citation_author=JM Bardeen; citation_volume=22; citation_publication_date=1980; citation_pages=1882-1905; citation_id=CR89 citation_title=Cosmological Inflation and Large-scale Structure; citation_publication_date=2000; citation_id=CR90; citation_author=A Liddle; citation_author=D Lyth; citation_publisher=Cambridge University Press A.M. Dizgah, G. Franciolini, A. Riotto, Primordial black holes from broad spectra: abundance and clustering. JCAP 11, 001 (2019). arXiv:1906.08978 H. Kodama, M. Sasaki, Evolution of isocurvature perturbations. 1. Photon-Baryon universe. Int. J. Mod. Phys. A 1, 265 (1986) H. Kodama, M. Sasaki, Evolution of isocurvature perturbations. 2. Radiation dust universe. Int. J. Mod. Phys. A 2, 491 (1987) citation_journal_title=Phys. Rev. D; citation_title=A new approach to the evolution of cosmological perturbations on large scales; citation_author=D Wands, KA Malik, DH Lyth, AR Liddle; citation_volume=62; citation_publication_date=2000; citation_id=CR94 V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203–333 (1992) citation_journal_title=Astron. Astrophys.; citation_title=The behaviour of point masses in an expanding cosmological substratum; citation_author=P Meszaros; citation_volume=37; citation_publication_date=1974; citation_pages=225-228; citation_id=CR96 S. Bahamonde, K.F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry et al., Teleparallel gravity: from theory to cosmology. arXiv:2106.13793 citation_journal_title=Phys. Rev. D; citation_title=Bayesian analysis of gravity using data; citation_author=FK Anagnostopoulos, S Basilakos, EN Saridakis; citation_volume=100; citation_publication_date=2019; citation_id=CR98 citation_journal_title=Phys. Lett. B; citation_title=No further gravitational wave modes in gravity; citation_author=K Bamba, S Capozziello, M Laurentis, S Nojiri, D Sáez-Gómez; citation_volume=727; citation_publication_date=2013; citation_pages=194-198; citation_id=CR99 citation_journal_title=Phys. Rev. D; citation_title= gravity after GW170817 and GRB170817A; citation_author=Y-F Cai, C Li, EN Saridakis, L Xue; citation_volume=97; citation_publication_date=2018; citation_id=CR100 K.N. Ananda, C. Clarkson, D. Wands, The cosmological gravitational wave background from primordial density perturbations. Phys. Rev. D 75, 123518 (2007). arXiv:gr-qc/0612013 citation_journal_title=Phys. Rev. D; citation_title=Gravitational wave spectrum induced by primordial scalar perturbations; citation_author=D Baumann, PJ Steinhardt, K Takahashi, K Ichiki; citation_volume=76; citation_publication_date=2007; citation_id=CR102 citation_journal_title=Phys. Rev. D; citation_title=Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations; citation_author=K Kohri, T Terada; citation_volume=97; citation_publication_date=2018; citation_id=CR103 citation_journal_title=JCAP; citation_title=A cosmological signature of the SM Higgs instability: gravitational waves; citation_author=JR Espinosa, D Racco, A Riotto; citation_volume=1809; citation_publication_date=2018; citation_pages=012; citation_id=CR104 citation_journal_title=Phys. Rep.; citation_title=Gravitational wave experiments and early universe cosmology; citation_author=M Maggiore; citation_volume=331; citation_publication_date=2000; citation_pages=283-367; citation_id=CR105 citation_journal_title=Phys. Rev. D; citation_title=New observational constraints on gravity through gravitational-wave astronomy; citation_author=RC Nunes, S Pan, EN Saridakis; citation_volume=98; citation_publication_date=2018; citation_id=CR106 Planck collaboration, Y. Akrami et al., Planck 2018 results. X. Constraints on inflation. arXiv:1807.06211 citation_journal_title=JCAP; citation_title=MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles; citation_author=T Hasegawa, N Hiroshima, K Kohri, RSL Hansen, T Tram, S Hannestad; citation_volume=12; citation_publication_date=2019; citation_pages=012; citation_id=CR108 citation_journal_title=Phys. Rev. D; citation_title=Enhancement of gravitational waves induced by scalar perturbations due to a sudden transition from an early matter era to the radiation era; citation_author=K Inomata, K Kohri, T Nakama, T Terada; citation_volume=100; citation_publication_date=2019; citation_id=CR109 citation_journal_title=Phys. Lett. B; citation_title=Exploring evaporating primordial black holes with gravitational waves; citation_author=G Domènech, V Takhistov, M Sasaki; citation_volume=823; citation_publication_date=2021; citation_id=CR110 citation_journal_title=Eur. Phys. J. C; citation_title=Gravitational waves in modified teleparallel theories of gravity; citation_author=H Abedi, S Capozziello; citation_volume=78; citation_publication_date=2018; citation_pages=474; citation_id=CR111