Nitrogen use efficiency in rapeseed. A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Albert B, Laperche A, Orsel M, Bregeon M, Busnot S, Bissuel C (2008) Architecture racinaire et efficience d’utilisation de l’azote chez deux génotypes de colza cultivés en conditions contrastées d’alimentation azotée XI journées du réseau “Biotechnologies végétales/ Amélioration des plantes et sécurité alimentaire-Biotech 2008”, Agrocampus Rennes, France.
Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya YN, Sawa S, Fukuda H, Wirén NV, Takahashi H (2013) CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc Natl Acad Sci U S A 111(5):2029–2034. doi: 10.1073/pnas.1319953111
Aufhammer W, Kübler E, Bury M (1994) Nitrogen uptake and nitrogen residuals of winter oilseed rape and fallout rape. J Agron Crop Sci 172:254–264. doi: 10.1111/j.1439-037X.1994.tb00176.x
Avice JC, Etienne P (2014) Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.). J Exp Bot 65(14):3813–3824. doi: 10.1093/jxb/eru177
Baggs EM, Rees RM, Smith KA, Vinten AJA (2000) Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manag 16(2):82–87. doi: 10.1111/j.1475-2743.2000.tb00179.x
Balint T, Rengel Z (2008) Nitrogen efficiency of canola genotypes varies between vegetative stage and grain maturity. Euphytica 164(2):421–432. doi: 10.1007/s10681-008-9693-6
Balint T, Rengel Z, Allen D (2008) Australian canola germplasm differs in nitrogen and sulfur efficiency. Crop Past Sci 60:262–270. doi: 10.1071/AR06255
Bänziger M, Betrán FJ, Lafitte HR (1997) Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments. Crop Sci 37:1103–1109. doi: 10.2135/cropsci1997
Barraclough PB (1989) Root growth, macro-nutrient uptake dynamics and soil fertility requirements of a high-yielding winter oilseed rape crop. Plant Soil 119:59–70. doi: 10.1007/BF02370269
Berrocoso J, Rojas O, Liu Y, Shoulders J, González-Vega J, Stein H (2015) Energy concentration and amino acid digestibility in high-protein canola meal, conventional canola meal, and soybean meal fed to growing pigs. J Anim Sci 93(5):2208–2217
Berry PM, Spink J, Foulkes MJ, White PJ (2010) The physiological basis of genotypic differences in nitrogen use efficiency in oilseed rape (Brassica napus L.). Field Crop Res 119(2–3):365–373. doi: 10.1016/j.fcr.2010.08.004
Billen G, Garnier J, Lassaletta L (2013) The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales. Philos Trans R Soc Lond B Biol Sci 368(1621):20130123. doi: 10.1098/rstb.2013.0123
Bissuel-Belaygue C, Allirand J M, Laperche A, Bidon M, Guichard S, leport L, Daniel L, Burban M, Duprix P, Franchet C, Rodrigues J, Richard-Molard C (2015) PERISCOPE : a new phenotyping experimental device for individual root and shoot investigations in reconstructed canopy until harvest, under field-like conditions, 14th International Rapeseed Congress, Saskatoon (Canada)
Bouchet A-S, Nesi N, Bissuel C, Bregeon M, Lariepe A, Navier H, Ribière N, Orsel M, Grezes-Besset B, Renard M, Laperche A (2014) Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. Euphytica 199(1–2):183–205. doi: 10.1007/s10681-014-1130-4
Brancourt-Hulmel M, Heumez E, Pluchard P, Beghin D, Depatureaux C, Giraud A, Le Gouis J (2005) Indirect versus direct selection of winter wheat for low-input or high-input levels. Crop Sci 45(4):1427. doi: 10.2135/cropsci2003.0343
Bus A, Korber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123(8):1413–1423. doi: 10.1007/s00122-011-1676-7
Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953. doi: 10.1126/science.1253435
Christen O, Sieling K (1993) The effect of different preceding crops on the development, growth and yield of winter barley. J Agron Crop Sci 171:114–123
Christen O, Sieling K, Hanus H (1992) The effect of different preceding crops on the development, growth and yield of winter wheat. Eur J Agron 1(1):21–28
Colnenne C, Meynard JM, Reau R, Justes E, Merrien A (1998) Determination of a critical dilution curve for winter oilseed rape. Ann Bot 81:311–317. doi: 10.1006/anbo.1997.0557
Conant RT, Berdanier AB, Grace PR (2013) Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob Biogeochem Cycles 27(2):558–566. doi: 10.1002/gbc.20053
Cormier F, Faure S, Dubreuil P, Heumez E, Beauchene K, Lafarge S, Praud S, Le Gouis J (2013) A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor Appl Genet 126(12):3035–3048. doi: 10.1007/s00122-013-2191-9
Cramer N (1993) Umweltverträglichkeit der N-Versorgung des Rapses. 11: 4–7
Dejoux J-F, Recous S, Meynard J-M, Trinsoutrot I, Leterme P (2000) The fate of nitrogen from winter-frozen rapeseed leaves:mineralization, fluxes to the environment and uptake by rapeseed crop in spring. Plant Soil 218:257–272. doi: 10.1023/A:1014934924819
Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crop Res 67:35–49. doi: 10.1016/S0378-4290(00)00082-4
Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126(1):1–11. doi: 10.1007/s00122-012-1964-x
Etienne P, Desclos M, Gou LL, Gombert J, Bonnefoy J, Maurel K, Dily FL, Ourry A, Avice J-C (2007) N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity. Funct Plant Biol 34(10):895–906. doi: 10.1093/jxb/erv031
Faes P, Deleu C, Ainouche A, Le Caherec F, Montes E, Clouet V, Gouraud AM, Albert B, Orsel M, Lassalle G, Leport L, Bouchereau A, Niogret MF (2015) Molecular evolution and transcriptional regulation of the oilseed rape proline dehydrogenase genes suggest distinct roles of proline catabolism during development. Planta 241(2):403–419. doi: 10.1007/s00425-014-2189-9
Fageria N K, Baligar V C (2005) Enhancing Nitrogen Use Efficiency in crop plants. Adv Agron 88:97–185. doi: 10.1016/S0065-2113(05)88004-6
Fei H, McVetty PBE, Kevin Vessey J (2013) 13C and 15N partitioning among shoots, roots, and soil in Brassica napus genotypes varying in seed oil content potential. Biocatal Agric Biotechnol 2(2):143–151. doi: 10.1016/j.bcab.2013.02.001
Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291. doi: 10.1146/annurev-arplant-050312-120137
Fletcher RS, Mullen JL, Heiliger A, McKay JK (2014) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot 66(1):245–256. doi: 10.1093/jxb/eru423
Food and Agriculture Organization of the United Nations (2013) FAOSTAT
Gammelvind LH, Schjoerring JK, Mogensen VO, Jensen CR, Bock JGH (1996) Photosynthesis in leaves and siliques of winter oilseed rape (Brassica napus L.). Plant Soil 186:227–236. doi: 10.1007/BF02415518
Garnett T, Conn V, Kaiser B N (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32(9): 1272–1283. doi: 10.1111/j.1365-3040.2009.02011.x
Gehringer A, Snowdon R, Spiller T, Basunanda P, Friedt W (2007) New oilseed rape (Brassica napus) hybrids with high levels of heterosis for seed yield under nutrient-poor conditions. Breed Sci 57:315–320. doi: 10.1270/jsbbs.57.315
Girondé A, Etienne P, Trouverie J, Bouchereau A, Le Cahérec F, Leport L, Orsel M, Niogret M-F, Nesi N, Carole D, Soulay F, Masclaux-Daubresse C, Avice J-C (2015) The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. BMC Plant Biol 15(1):59. doi: 10.1186/s12870-015-0437-1
Gombert J, Etienne P, Ourry A, Le Dily F (2006) The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment. J Exp Bot 57(9):1949–1956. doi: 10.1093/jxb/erj142
Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9(12):597–605. doi: 10.1016/j.tplants.2004.10.008
Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85(3):252–262. doi: 10.1139/b07-019
Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82(6):603–622. doi: 10.1007/s11103-013-0013-8
Gül MK (2002) QTL mapping and analysis of QTL x nitrogen interactions for some yield components in Brassica napus L. Turk J Agric For 27:71–76
Habekotté B (1993) Quantitative analysis of pod formation, seed set and seed filling in winter oilseed rape (Brassica napus L.) under field conditions. Field Crop Res 35:21–33. doi: 10.1016/0378-4290(93)90133-8
Habekotté B (1997) Options for increasing seed yield of winter oilseed rape (Brassica napus L.): a simulation study. Field Crop Res 54: 109–126. doi: 10.1016/S0378-4290(97)00041-5
Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG (2015) The genetics of nitrogen use efficiency in crop plants. Annu Rev Genet 13(27). doi: 10.1146/annurev-genet-112414-055037
Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2005) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53(4):793–802. doi: 10.1007/s10722-004-5541-2
Hatzig SV, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner MH, Leckband G, Abbadi A, Snowdon RJ (2015) Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci 6:221. doi: 10.3389/fpls.2015.00221
Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58(9): 2369–2387. doi: 10.1093/jxb/erm097
Hocking PJ, Randall PJ, DeMarco D (1997) The response of dryland canola to nitrogen fertilizer: partitioning and mobilization of dry matter and nitrogen, and nitrogen effects on yield components. Field Crop Res 54:201–220. doi: 10.1016/S0378-4290(97)00049-X
Hohmann, M., Stahl, A., Rudloff, J., Wittkop, B., and Snowdon, R. J. (2016) Not a load of rubbish: simulated field trials in large-scale containers. Plant, Cell & Environ, doi: 10.1111/pce.12737
Jan HU, Abbadi A, Lucke S, Nichols RA, Snowdon RJ (2016) Genomic prediction of testcross performance in canola (Brassica napus). PLoS One 11(1):e0147769. doi: 10.1371/journal.pone.0147769
Kage H (1997) Is low rooting density of faba beans a cause of high residual nitrate content of soil at harvest? Plant Soil 190(1):47–60. doi: 10.1023/A:1004250905262
Kaiser E-A, Kohrs K, Kücke M, Schnug E, Heinemeyer O, Munch JC (1998) Nitrous oxide release from arable soil: importance of N-fertilization, crops and temporal variation. Soil Biol Biochem 30(12):1553–1563. doi: 10.1016/S0038-0717(98)00036-4
Kamh M, Wiesler F, Ulas A, Horst WJ (2005) Root growth and N-uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency. J Plant Nutr Soil Sci 168:130–137. doi: 10.1002/jpln.200421453
Karamanos RE, Goh TB, Poisson DP (2005) Nitrogen, phosphorus, and sulfur fertility of hybrid canola. J Plant Nutr 28(7):1145–1161. doi: 10.1081/PLN-200063138
Karamanos RE, Goh TB, Flaten DN (2006) Nitrogen and sulphur fertilizer management for growing canola on sulphur sufficient soils. Can J Plant Sci 87:201–210. doi: 10.4141/P06-133
Kebede B, Thiagarajah M, Zimmerli C, Rahman MH (2010) Improvement of open-pollinated spring rapeseed (Brassica napus L.) through introgression of genetic diversity from winter rapeseed. Crop Sci 50(4):1236. doi: 10.2135/cropsci2009.06.0352
Kessel B, Schierholt A, Becker HC (2012) Nitrogen use efficiency in a genetically diverse set of winter oilseed rape (Brassica napus L.). Crop Sci 52(6):2546. doi: 10.2135/cropsci2012.02.0134
Koeslin-Findeklee F, Meyer A, Girke A, Beckmann K, Horst WJ (2014) The superior nitrogen efficiency of winter oilseed rape (Brassica napus L.) hybrids is not related to delayed nitrogen starvation-induced leaf senescence. Plant Soil 384(1–2):347–362. doi: 10.1007/s11104-014-2212-8
Koeslin-Findeklee F, Becker M, Graaff EVD, Roitsch T, Horst W (2015a) Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals. J Exp Bot 66(13):3669–3681. doi: 10.1093/jxb/erv170
Koeslin-Findeklee F, Rizi VS, Becker MA, Parra-Londono S, Arif M, Balazadeh S, Mueller-Roeber B, Kunze R, Horst WJ (2015b) Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.). Plant Sci 233:174–185. doi: 10.1016/j.plantsci.2014.11.018
Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18(6):927–937. doi: 10.1016/j.devcel.2010.05.008
Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9(10):105011. doi: 10.1088/1748-9326/9/10/105011
Le Deunff E, Malagoli P (2014) An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow-force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx. Ann Bot 113(6):991–1005. doi: 10.1093/aob/mcu021
Lee B-R, Jin Y-L, Park S-H, Zaman R, Zhang Q, Avice J-C, Ourry A, Kim T-H (2015) Genotypic variation in N uptake and assimilation estimated by 15N tracing in water deficit-stressed Brassica napus. Environ Exp Bot 109:73–79. doi: 10.1016/j.envexpbot.2014.08.004
Lemaire G, Salette J, Sigogne M, Terrasson J-P (1984) Relation entre dynamique de croissance et dynamique de prélèvement d’azote pour un peuplement de graminées fourragères. I.- Etude de l’effet du milieu. Agronomie 4(5):423–430. doi: 10.1051/agro:19840503
Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci U S A 102(38):13693–13698. doi: 10.1073/pnas.0504219102
Lynch JP (2014) Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. Plant Cell Environ. doi: 10.1111/pce.12451
Malagoli P, Laine P, Rossato L, Ourry A (2005a) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N. Ann Bot 95(5):853–861. doi: 10.1093/aob/mci091
Malagoli P, Laine P, Rossato L, Ourry A (2005b) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. II. An 15N-labelling-based simulation model of N partitioning between vegetative and reproductive tissues. Ann Bot 95(7):1187–1198. doi: 10.1093/aob/mci131
Malamy JE, Ryan KS (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol 127(3):899–909. doi: 10.1104/pp.010406
Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105(7):1141–1157. doi: 10.1093/aob/mcq028
Miersch S (2014) Nitrogen efficiency in semi-dwarf and normal hybrids of oilseed rape. Faculty of Agricultural Sciences, Georg-August-Universität Göttingen, Göttingen
Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58(9):2297–2306. doi: 10.1093/jxb/erm066
Miro B (2010) Identification of traits for nitrogen use efficiency in oilseed rape (Brassica napus L.). School of Agriculture Food and Rural Development, Newcastle University, Newcastle
Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564. doi: 10.2134/agronj1982.00021962007400030037x
Muñoz-Huerta RF, Guevara-Gonzalez RG, Contreras-Medina LM, Torres-Pacheco I, Prado-Olivarez J, Ocampo-Velazquez RV (2013) A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13(8):10823–10843. doi: 10.3390/s130810823
Musse M, De Franceschi L, Cambert M, Sorin C, Le Caherec F, Burel A, Bouchereau A, Mariette F, Leport L (2013) Structural changes in senescing oilseed rape leaves at tissue and subcellular levels monitored by nuclear magnetic resonance relaxometry through water status. Plant Physiol 163(1):392–406. doi: 10.1104/pp.113.223123
Noh Y, Amasino R (1999) Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Mol Biol 41(2):195–206. doi: 10.1023/A:1006389803990
Nyikako J, Schierholt A, Kessel B, Becker HC (2014) Genetic variation in nitrogen uptake and utilization efficiency in a segregating DH population of winter oilseed rape. Euphytica 199(1–2):3–11. doi: 10.1007/s10681-014-1201-6
Orsel M, Moison M, Clouet V, Thomas J, Leprince F, Canoy AS, Just J, Chalhoub B, Masclaux-Daubresse C (2014) Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence. J Exp Bot 65(14):3927–3947. doi: 10.1093/jxb/eru041
Parnaudeau V, Jeuffroy MH, Machet JM, Reau R, Bissuel C, Eveillard P (2009) Methods for determining the nitrogen fertiliser requirements of some major arable crops in France. International Fertiliser Society, Cambridge, pp 1–26
Postma JA, Schurr U, Fiorani F (2014) Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation. Biotechnol Adv 32(1):53–65. doi: 10.1016/j.biotechadv.2013.08.019
Qian W, Sass O, Meng J, Li M, Frauen M, Jung C (2007) Heterotic patterns in rapeseed (Brassica napus L.): I. Crosses between spring and Chinese semi-winter lines. Theor Appl Genet 115(1):27–34. doi: 10.1007/s00122-007-0537-x
Rahman M, McClean P (2013) Genetic analysis on flowering time and root system in Brassica napus L. Crop Sci 53(1):141. doi: 10.2135/cropsci2012.02.0095
Rathke GW, Christen O, Diepenbrock W (2005) Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crop Res 94(2–3):103–113. doi: 10.1016/j.fcr.2004.11.010
Rathke GW, Behrens T, Diepenbrock W (2006) Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric Ecosyst Environ 117(2–3):80–108. doi: 10.1016/j.agee.2006.04.006
Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006a) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci U S A 103(50):19206–19211. doi: 10.1073/pnas.0605275103
Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006b) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140(3):909–921. doi: 10.1104/pp.105.075721
Rossato L, Lainé P, Ourry A (2001) Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot 52(361):1655–1663. doi: 10.1016/j.fcr.2015.04.005
Samans B, Snowdon RJ, Scholz U, Weise S, von Wiren N, Ordon F, Nagel K, Fiorani F, Schurr U, Léon J, Li J, Stich B, Becker H, Hinze M, Brummermann H, Breuer F, Duchscherer P, Kaiser J, Abel S, Stelling D, Micic Z, Ahlemeyer J, Wolf M, Abbadi A, Leckband G (2013) PreBreed-Yield: population genomics resources for nested association mapping and precision breeding in winter oilseed rape. International Plant and Animal Genome Conference XXI 2013, San Diego
Schulte auf’m Erley G, Wijaya K-A, Ulas A, Becker H, Wiesler F, Horst WJ (2007) Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars. Physiol Plant 130(4):519–531. doi: 10.1111/j.1399-3054.2007.00921.x
Schulte auf’m Erley G, Behrens T, Ulas A, Wiesler F, Horst WJ (2011) Agronomic traits contributing to nitrogen efficiency of winter oilseed rape cultivars. Field Crop Res 124(1):114–123. doi: 10.1016/j.fcr.2011.06.009
Seyis F, Snowdon RJ, Lühs W, Friedt W (2003) Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breed 122:473–478. doi: 10.1111/j.1439-0523.2003.00859.x
Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP (2012) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot 112(2):381–389. doi: 10.1093/aob/mcs245
Snowdon RJ, Abbadi A, Kox T, Schmutzer T, Leckband G (2015) Heterotic haplotype capture: precision breeding for hybrid performance. Trends Plant Sci 20(7):410–413. doi: 10.1016/j.tplants.2015.04.013
Sorin C, Musse M, Mariette F, Bouchereau A, Leport L (2015) Assessment of nutrient remobilization through structural changes of palisade and spongy parenchyma in oilseed rape leaves during senescence. Planta 241(2):333–346. doi: 10.1007/s00425-014-2182-3
Sorin C, Leport L, Cambert M, Bouchereau A, Mariette F, Musse M (2016) Nitrogen deficiency impacts on leaf cell and tissue structure with consequences for senescence associated processes in Brassica napus. Botanical Studies in press.
Spano G (2003) Physiological characterization of ‘stay green’ mutants in durum wheat. J Exp Bot 54(386):1415–1420. doi: 10.1093/jxb/erg150
Stahl A, Friedt W, Wittkop B, Snowdon RJ (2015) Complementary diversity for nitrogen uptake and utilisation efficiency reveals broad potential for increased sustainability of oilseed rape production. Plant Soil 400(1–2):245–262. doi: 10.1007/s11104-015-2726-8
Sullivan WM, Jiang Z, Hull RJ (2000) Root morphology and its relationship with nitrate uptake in kentucky bluegrass. Crop Sci 40(3):765. doi: 10.2135/cropsci2000.403765x
Svečnjak Z, Rengel Z (2005) Canola cultivars differ in nitrogen utilization efficiency at vegetative stage. Field Crop Res 97(2–3):221–226. doi: 10.1016/j.fcr.2005.10.001
Svečnjak Z, Rengel Z (2006) Nitrogen utilization efficiency in canola cultivars at grain harvest. Plant Soil 283(1–2):299–307. doi: 10.1007/s11104-006-0020-5
Sylvester-Bradley R, Kindred DR (2009) Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J Exp Bot 60(7):1939–1951. doi: 10.1093/jxb/erp116
Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie AR, Hibberd JM (2010) Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant J 62(4):641–652. doi: 10.1111/j.1365-313X.2010.04179.x
Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337. doi: 10.1093/jexbot/51.suppl_1.329
Thomas CL, Graham NS, Hayden R, Meacham MC, Neugebauer K, Nightingale M, Dupuy LX, Hammond JP, White PJ, Broadley MR (2016) High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.). Ann Bot. doi: 10.1093/aob/mcw046
Thurling N (1991) Application of the ideotype concept in breeding for higher yield in the oilseed brassicas. Field Crop Res 26:201–219. doi: 10.1016/0378-4290(91)90036-U
Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677
Tilsner J, Kassner N, Struck C, Lohaus G (2005) Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta 221(3):328–338. doi: 10.1007/s00425-004-1446-8
Tranbarger TJ, Al-ghazi Y, Muller B, Serve BTdl, Doumas P, Touraine B (2003) Transcription factor genes with expression correlated to nitrate-related root plasticity of Arabidopsis thaliana. Plant Cell Environ 26(3):459–469. doi: 10.1046/j.1365-3040.2003.00977.x
U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452
Udall JA, Quijada PA, Polewicz H, Vogelzang R, Osborn TC (2004) Phenotypic effects of introgressing chinese winter and resynthesized Brassica napus L. germplasm into hybrid spring canola. Crop Sci 44:1990–1996
Ulas A, Behrens T, Wiesler F, Horst WJ, Schulte auf’m Erley G (2013) Does genotypic variation in nitrogen remobilisation efficiency contribute to nitrogen efficiency of winter oilseed-rape cultivars (Brassica napus L.)? Plant Soil 371:463–471. doi: 10.1007/s11104-013-1688-y
van der Heijden G, Song Y, Horgan G, Polder G, Dieleman A, Bink M, Palloix A, van Eeuwijk F, Glasbey C (2012) SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Funct Plant Biol 39(11):870–877. doi: 10.1071/FP12019
Vincourt P (2014) Research fields, challenges and opportunities in European oilseed crops breeding. OCL 21(6):D602. doi: 10.1051/ocl/2014043
Voss-Fels K, Snowdon RJ (2015) Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J. doi: 10.1111/pbi.12456
Wang G, Ding G, Li L, Cai H, Ye X, Zou J, Xu F (2014) Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Ann Bot 114(3):549–559. doi: 10.1093/aob/mcu135
White PJ, George TS, Dupuy LX, Karley AJ, Valentine TA, Wiesel L, Wishart J (2013) Root traits for infertile soils. Front Plant Sci 4:193. doi: 10.3389/fpls.2013.00193
Wiesler F, Horst WJ (1994) Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil 163(2):267–277. doi: 10.1007/BF00007976
Wiesler F, Behrens T, Horst WJ (2001) Nitrogen efficiency of contrasting rape ideotypes, plant nutrition. Springer, Netherlands, pp 60–61
Wood CW, Reeves DW, Duffield RR, Edmistena KL (1992) Field chlorophyll measurements for evaluation of corn nitrogen status. J Plant Nutr 15(4):487–500
Würschum T, Abel S, Zhao Y, Léon J (2013) Potential of genomic selection in rapeseed (Brassica napus L.) breeding. Plant Breed 133(1):45–51. doi: 10.1111/pbr.12137
Xu G, Fan X, Miller A J (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182. doi: 10.1146/annurev-arplant-042811-105532
Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121(1):181–193. doi: 10.1007/s00122-010-1301-1
Yau SK, Thurling N (1986) Variation in nitrogen response among spring rape (Brassica napus) cultivars and its relationship to nitrogen uptake and utilization. Field Crop Res 16(2):139–155. doi: 10.1016/0378-4290(87)90004-9
Yea X, Honga J, Shiab L, Xu F (2010) Adaptability mechanism of nitrogen-efficient germplasm of natural variation to low nitrogen stress in Brassica napus. J Plant Nutr 33(13):2028–2040. doi: 10.1080/01904167.2010.512211
Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279(5349):407–409. doi: 10.1126/science.279.5349.407
Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51(342):51–59. doi: 10.1093/jexbot/51.342.51
Zhao Y, Wang ML (2004) Inheritance and agronomic performance of an apetalous flower mutant in Brassica napus L. Euphytica 137:381–386. doi: 10.1023/B:EUPH.0000040522.37048.7a