Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chiến lược tiếp nhận nitơ của cây thông trưởng thành ở Đông Bắc Trung Quốc, được minh họa bằng phương pháp độ dồi dào tự nhiên của 15N
Tóm tắt
Các cây thông phân phối các dạng nitơ khác nhau từ đất, bao gồm ammonium, nitrate và nitơ hữu cơ hòa tan (DON), để duy trì sự phát triển của cây. Các nghiên cứu trước đây chủ yếu tập trung vào các nguồn nitơ vô cơ và các dạng axit amin cụ thể thông qua đánh dấu 15N, nhưng kiến thức về sự đóng góp của DON vào việc tiếp nhận nitơ của cây thông trưởng thành vẫn còn hạn chế. Ở đây, chúng tôi đã định lượng sự đóng góp của các dạng nitơ khác nhau (DON so với NH4+ so với NO3−) cho tổng lượng nitơ tiếp nhận, dựa trên độ dồi dào tự nhiên của 15N trong thực vật và nitơ có sẵn trong đất, ở bốn loài thông trưởng thành (Pinus koraiensis, Pinus sylvestris, Picea koraiensis và Larix olgensis). DON đóng góp 31%, 29%, 28% và 24% vào tổng lượng nitơ tiếp nhận của Larix olgensis, Picea koraiensis, Pinus koraiensis và Pinus sylvestris, tương ứng, trong khi nitrate đóng góp từ 42 đến 52% và ammonium đóng góp từ 19 đến 29% của tổng lượng nitơ tiếp nhận cho bốn loài thông này. Kết quả của chúng tôi cho thấy cả bốn loại thông đều có thể tiếp nhận một tỷ lệ đáng kể nitrate, trong khi DON cũng là một nguồn nitơ quan trọng cho bốn loài thông này. Với việc DON là dạng nitơ chiếm ưu thế trong đất nghiên cứu, mô hình tiếp nhận như vậy ở cây thông có thể là một chiến lược thích nghi của thực vật để cạnh tranh cho các nguồn nitơ có sẵn từ đất, nhằm thúc đẩy sự phát triển của cây thông và duy trì sự đồng tồn tại của các loài.
Từ khóa
#cây thông #tiếp nhận nitơ #15N #nitrogen forms #Đông Bắc Trung QuốcTài liệu tham khảo
Ackerman D, Millet DB, Chen X (2018) Global estimates of inorganic nitrogen deposition across four decades. Glob Biogeochem Cycle 33:100–107 https://doi.org/10.1029/2018GB005990
Andersen KM, Mayor JR, Turner BL (2017) Plasticity in nitrogen uptake among plant species with contrasting nutrient acquisition strategies in a tropical forest. Ecology 98(5):1388–1398 https://doi.org/10.1002/ecy.1793
Andersson P, Berggren D (2005) Amino acids, total organic and inorganic nitrogen in forest floor soil solution at low and high nitrogen input. Water Air Soil Pollut 162(1/4):369–384 https://doi.org/10.1007/s11270-005-7372-y
Behl R, Tischner R, Raschke K (1988) Induction of a high-capacity nitrate-uptake mechanism in barley roots prompted by nitrate uptake through a constitutive low-capacity mechanism. Planta 176(2):235–240 https://doi.org/10.2307/23379355
Boczulak SA, Hawkins BJ, Roy R (2014) Temperature effects on nitrogen form uptake by seedling roots of three contrasting conifers. Tree Physiol 34:513–523 https://doi.org/10.1093/treephys/tpu028
Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159(6):567–584 https://doi.org/10.1078/01761610222260815
Chalot M, Javelle A, Blaudez D et al (2002) An update on nutrient transport processes in ectomycorrhizas. Plant Soil 244(1):165–175 https://doi.org/10.1007/978-94-017-1284-2_16
Craine JM, Elmore AJ, Aidar MPM et al (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992 https://doi.org/10.1111/j.1469-8137.2009.02917.x
Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Ann Rev Ecol Syst 33:507–559 https://doi.org/10.1146/annurev.ecolsys.33.020602.095451
Doyle A, Weintraub M, Schimel J (2004) Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts. Soil Sci Soc Am J 68(2):669–676 https://doi.org/10.2136/sssaj2004.6690
Epron D, Koutika L, Tchichelle SV, Bouillet J, Mareschal L (2016) Uptake of soil mineral nitrogen by Acacia mangium and Eucalyptus urophylla × grandis: no difference in N form preference. J Plant Nutr Soil Sci 179(6):726–732 https://doi.org/10.1002/jpln.201600284
Fraterrigo JM, Strickland MS, Keiser AD, Bradford MA (2011) Nitrogen uptake and preference in a forest understory following invasion by an exotic grass. Oecologia 167(3):781–791 https://doi.org/10.1007/s00442-011-2030-0
Gao L, Cui XY, Hill PW, Guo YF (2020) Uptake of various nitrogen forms by co-existing plant species in temperate and cold-temperate forests in northeast China. Appl Soil Ecol 147:103398 https://doi.org/10.1016/j.apsoil.2019.103398
Gruffman L, Jämtgård S, Näsholm T (2014) Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings. Tree Physiol 34:1–9 https://doi.org/10.1093/treephys/tpt121
Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180(3):673–683 https://doi.org/10.1111/j.1469-8137.2008.02573.x
Harrison KA, Bol R, Bardgett RD (2007) Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–999 https://doi.org/10.1890/06-1018
Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126 https://doi.org/10.1046/j.1469-8137.2003.00657.x
Hobbie EA, Högberg H (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196(2):367–382 https://doi.org/10.1111/j.1469-8137.2012.04300.x
Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar delta 15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122(2):273–283 10.1007/PL00008856
Hoffmann A, Milde S, Desel C et al (2007) N form-dependent growth retardation of Arabidopsis thaliana seedlings as revealed from physiological and microarray studies. J Plant Nutr Soil Sci 170(1):87–97 https://doi.org/10.1002/jpln.200625032
Houlton BZ, Sigman DM, Schuur EAG, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci USA 104(21):8745–8750 https://doi.org/10.1073/pnas.0609935104
Johnson DW, Cheng W, Burke IC (2000) Biotic and abiotic nitrogen retention in a variety of forest soils. Soil Sci Soc Am J 64(4):1503–1514 https://doi.org/10.2136/sssaj2000.6441503x
Jones DL, Shannon D, Junvee-Fortune T, Farrarc JF (2005) Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol Biochem 37(1):179–181 https://doi.org/10.1016/j.soilbio.2004.07.021
Knapp AN, Sigman DM, Lipschultz F (2005) N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic time-series study site. Glob Biogeochem Cycle 19(1):1–15 https://doi.org/10.1029/2004GB002320
Kronzucker HJ, Siddiqi MY, Glass ADM (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385(6611):59–61 https://doi.org/10.1038/385059a0
Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198(3):656–669 https://doi.org/10.1111/nph.12235
Lavoie N, Vézina L, Margolis HA (1992) Absorption and assimilation of nitrate and ammonium ions by jack pine seedlings. Tree Physiol 11:171–183 https://doi.org/10.1093/treephys/11.2.171
Li CC, Li QR, Qiao N, Xu XL, Li QK, Wang HM (2015) Inorganic and organic nitrogen uptake by nine dominant subtropical tree species. iForest 9:253–258 https://doi.org/10.3832/ifor1502-008
Liu M, Li CC, Xu XL et al (2017) Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests. Tree Physiol 37:1515–1526 https://doi.org/10.1093/treephys/tpx046
Liu XJ, Zhang Y, Han WX et al (2013) Enhanced nitrogen deposition over China. Nature 494(7438):459–462 https://doi.org/10.1038/nature11917
Liu XY, Koba K, Makabe A, Liu CQ (2014) Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate. Front Plant Sci 5:1–14 https://doi.org/10.3389/fpls.2014.00355
Lucash MS, Joslin JD, Yanai R (2005) Temporal variation in nutrient uptake capacity by intact roots of mature loblolly pine. Plant Soil 272(1):253–262 https://doi.org/10.1007/s11104-004-5296-8
Mayor JR, Wright SJ, Schuur EAG, Brooks ME, Turner BL (2014) Stable nitrogen isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a lowland tropical rainforest. Biogeochemistry 119(1-3):293–306 https://doi.org/10.1007/s10533-014-9966-1
McKane RB, Johnson LC, Shaver GR et al (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71 https://doi.org/10.1038/415068a
Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182(1):31–48 https://doi.org/10.1111/j.1469-8137.2008.02751.x
Öhlund J, Näsholm T (2004) Regulation of organic and inorganic nitrogen uptake in Scots pine (Pinus sylvestris) seedlings. Tree Physiol 24:1397–1402 https://doi.org/10.1093/treephys/24.12.1397
Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14(5):493–502 https://doi.org/10.1111/j.1461-0248.2011.01611.x
Owen AG, Jones DL (2001) Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem 33:651–657 https://doi.org/10.1016/S0038-0717(00)00209-1
Peri PL, Ladd B, Pepper DA, Bonser SP, Laffan SW, Amelung W (2012) Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests. Glob Change Biol 18(1):311–321 https://doi.org/10.1111/j.1365-2486.2011.02494.x
Persson J, Gardeström P, Näsholm T (2006) Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. J Exp Bot 57(11):2651–2659 https://doi.org/10.1093/jxb/erl028
Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136(2):261–269 https://doi.org/10.1007/s00442-003-1218-3
Russo SE, Kochsiek A, Olney J, Thompson L, Miller AE, Tan S (2013) Nitrogen uptake strategies of edaphically specialized Bornean tree species. Plant Ecol 214:1405–1416 https://doi.org/10.1007/s11258-013-0260-4
Socci AM, Templer PH (2011) Temporal patterns of inorganic nitrogen uptake by mature sugar maple (Acer saccharum Marsh.) and red spruce (Picea rubens Sarg.) trees using two common approaches. Plant Ecol Divers 4(2-3):141–152 https://doi.org/10.1080/17550874.2011.624557
Song MH, Zheng LL, Suding KN, Yin TF, Yu FH (2015) Plasticity in nitrogen form uptake and preference in response to long-term nitrogen fertilization. Plant Soil 394(1-2):215–224 https://doi.org/10.1007/s11104-015-2532-3
Svennerstam H, Jämtgård S, Ahmad I et al (2011) Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. New Phytol 191(2):459–467 https://doi.org/10.1111/j.1469-8137.2011.03699.x
Takebayashi Y, Koba K, Sasaki Y, Fang YT, Yoh M (2010) The natural abundance of 15N in plant and soil-available N indicates a shift of main plant N resources to NO3- from NH4+ along the N leaching gradient. Rapid Commun Mass Spectrom 24(7):1001–1008 https://doi.org/10.1002/rcm.4469
Uscola M, Villar-Salvador P, Oliet J, Warren CR (2017) Root uptake of inorganic and organic N chemical forms in two coexisting Mediterranean forest trees. Plant Soil 415(1):387–392 https://doi.org/10.1007/s1110401731726
Wang LX, Macko SA (2011) Constrained preferences in nitrogen uptake across plant species and environments. Plant Cell Environ 34(3):525–534 https://doi.org/10.1111/j.1365-3040.2010.02260.x
Wang SS, Chen AQ, Xie K et al (2020) Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc Natl Acad Sci USA 117(28):16649–16659 https://doi.org/10.1073/pnas.2000926117
Wei LL, Chen CR, Yu S (2015) Uptake of organic nitrogen and preference for inorganic nitrogen by two Australian native Araucariaceae species. Plant Ecol Divers 8(2):259–264 https://doi.org/10.1080/17550874.2013.871656
Yu Z, Zhang Q, Kraus TEC, Dahlgren RA, Anastasio C, Zasoski RJ (2002) Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry 61:173–198 https://doi.org/10.1023/A:1020221528515
Zhang SS, Fang YT, Xi D (2015) Adaptation of micro-diffusion method for the analysis of 15N natural abundance of ammonium in samples with small volume. Rapid Commun Mass Spectrom 29:1297–1306 https://doi.org/10.1002/rcm.7224
Zhang ZL, Li N, Xiao J et al (2018) Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China. Soil Biol Biochem 119:50–58 https://doi.org/10.1016/j.soilbio.2018.01.002
Zhou XL, Wang A, Hobbie EA et al (2020) Mature conifers assimilate nitrate as efficiently as ammonium from soils in four forest plantations. New Phytol 229(6):3184–3194 https://doi.org/10.1111/nph.17110
Zhu FF, Dai LM, Hobbie EA et al (2019) Uptake patterns of glycine, ammonium, and nitrate differ among four common tree species of Northeast China. Front Plant Sci 10:799 https://doi.org/10.3389/fpls.2019.00799