Tốc độ chuyển hóa nitơ trong đất ng Himalaya ở các điều kiện nhiệt độ và độ cao khác nhau

Springer Science and Business Media LLC - Tập 21 - Trang 13-26 - 2020
Niharika Sharma1, Sanjeev Kumar1
1Geosciences Division, Physical Research Laboratory, Ahmedabad, India

Tóm tắt

Mênh mông các hệ sinh thái nhạy cảm với khí hậu, như rừng núi nhiệt đới, vẫn chưa được nghiên cứu về các yếu tố điều khiển sự sẵn có của nitơ (N) và do đó là năng suất. Nhiệt độ và độ cao là hai yếu tố quan trọng, nhưng chưa được nghiên cứu nhiều, quyết định số phận của N trong các hệ sinh thái núi. Do đó, nghiên cứu hiện tại nhằm định lượng và hiểu các thay đổi trong tốc độ của các quá trình chuyển hóa N trong đất rừng núi nhiệt đới của dãy Himalaya dưới các điều kiện nhiệt độ-độ cao khác nhau. Kỹ thuật loãng đồng vị 15N đã được áp dụng để định lượng tốc độ chuyển hóa N thô trong các mẫu đất được thu thập ở hai khoảng độ sâu (0–20 cm và 20–40 cm) từ năm độ cao (3000 m, 2500 m, 2000 m, 1500 m và 1000 m so với mực nước biển) của dãy Himalaya Garhwal. Các tốc độ được đo ở điều kiện nhiệt độ thấp (10 °C) và nhiệt độ cao (23 °C) để phân tích tác động của sự thay đổi nhiệt độ lên chu trình N trong đất núi. Kết quả cho thấy có sự gia tăng đáng kể trong tốc độ khoáng hóa N thô dưới điều kiện nhiệt độ cao so với nhiệt độ thấp. Thú vị thay, tốc độ nitrat hóa thô không bị ảnh hưởng bởi sự thay đổi nhiệt độ. Sự tăng trưởng trong khoáng hóa N thô ở điều kiện nhiệt độ cao đi kèm với việc tiêu thụ amoni (NH4+), chủ yếu ở dạng giữ lại NH4+. Nói chung, tốc độ chuyển hóa N thô trong lớp đất mặt có phản ứng mạnh hơn với sự thay đổi về nhiệt độ và độ cao so với lớp đất dưới. Sự gia tăng trong tốc độ khoáng hóa N và các quá trình chu trình N khác trong đất ở nhiệt độ cao cho thấy khả năng tăng tốc độ chu trình N do hiện tượng nóng lên của đất Himalaya. Sự tăng cường giữ lại NH4+ và sự nhạy cảm kém của nitrat hóa với nhiệt độ có khả năng làm tăng bảo tồn N trong đất ở nhiệt độ cao. Sự biến đổi không nhất quán trong tốc độ chuyển hóa N với độ cao cho thấy sự kiểm soát cao hơn của các yếu tố edaphic lên chu trình N trong đất ở một độ cao nhất định.

Từ khóa

#chuyển hóa nitơ #hệ sinh thái núi #Himalaya #khoáng hóa #nitrat hóa #nhiệt độ #độ cao

Tài liệu tham khảo

Andersen MK, Jensen LS (2001) Low soil temperature effects on short-term gross N mineralisation–immobilisation turnover after incorporation of a green manure. Soil Biol Biochem 33:511–521. https://doi.org/10.1016/S0038-0717(00)00192-9 Auyeung DSN, Suseela V, Dukes JS (2012) Warming and drought reduce temperature sensitivity of nitrogen transformations. Glob Chang Biol 19:662–676. https://doi.org/10.1111/gcb.12063 Bagchi D, Singh RP (2011) Ground water brochure, district Tehri Garhwal, Uttarakhand. Ministry of Water Resources, Government of India, Central Ground Water Board, Dehradun Bauters M, Verbeeck H, Rütting T, Barthel M, Mujinya BB, Bamba F, Bodé S, Boyemba F, Bulonza E, Carlsson E, Eriksson L, Makelele I, Six J, Ntaboba LC, Boeckx P (2019) Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol Monogr 89:e01342. https://doi.org/10.1002/ecm.1342 Chandra J, Rawat VS, Rawat YS, Ram J (2010) Vegetational diversity along an altitudinal range in Garhwal Himalaya. Int J Biodvers Conserv 2:014–018 Dalias P, Anderson JM, Bottner P, Coûteaux M-M (2002) Temperature responses of net nitrogen mineralization and nitrification in conifer forest soils incubated under standard laboratory conditions. Soil Biol Biochem 34:691–701. https://doi.org/10.1016/S0038-0717(01)00234-6 Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514 Drury CF, Hart SC, Yan XM (2008) Nitrification techniques for soils. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 495–513 Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell JG, Ciais P, Cramer W, Ibrom A, Miglietta F, Poulter B, Rammig A, Seneviratne SI, Walz A, Wattenbach M, Zavala MA, Zscheischler J (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Chang Biol 21:2861–2880. https://doi.org/10.1111/gcb.12916 Fraser FC, Hallett PD, Wookey PA, Hartley IP, Hopkins DW (2013) How do enzymes catalysing soil nitrogen transformations respond to changing temperatures? Biol Fertil Soils 49:99–103. https://doi.org/10.1007/s00374-012-0722-1 Gairola S, Sharma CM, Ghildiyal SK, Suyal S (2011) Live tree biomass and carbon variation along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya (India). Curr Sci 100:1862–1870 Giovannini G, Poggio G, Sequi P (1975) Use of an automatic CHN analyzer to determine organic and inorganic carbon in soils. Commun Soil Sci Plan 6:39–49. https://doi.org/10.1080/00103627509366544 Grundmann GL, Renault P, Rosso L, Bardin R (1995) Differential effects of soil water content and temperature on nitrification and aeration. Soil Sci Soc Am J 59:1342–1349. https://doi.org/10.2136/sssaj1995.03615995005900050021x Hart SC, Perry DA (2001) Transferring soils from high- to low-elevation forests increases nitrogen cycling rates: climate change implications. Glob Chang Biol 5:23–32. https://doi.org/10.1046/j.1365-2486.1998.00196.x Hooker TD, Stark JM (2008) Soil C and N cycling in three semiarid vegetation types: response to an in situ pulse of plant detritus. Soil Biol Biochem 40:2678–2685. https://doi.org/10.1016/j.soilbio.2008.07.015 Huang Z, Xu Z, Blumfield TJ, Chen C, Bubb K (2008) Soil nitrogen mineralization and fate of (15NH4)2SO4 in field-incubated soil in a hardwood plantation of subtropical Australia: the effect of mulching. J Soils Sediments 8:389–397. https://doi.org/10.1007/s11368-008-0049-6 Jansen-Willems AB, Lanigan GJ, Clough TJ, Andresen LC, Müller C (2016) Long-term elevation of temperature affects organic N turnover and associated N2O emissions in a permanent grassland soil. Soil 2:601–614. https://doi.org/10.5194/soil-2-601-2016 Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data1. Soil Sci Soc Am J 18:33–34. https://doi.org/10.2136/sssaj1954.03615995001800010009x Kitayama K, Aiba S, Majalap-Lee N, Ohsawa M (1998) Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on mount Kinabalu, Borneo. Ecol Res 13:301–312. https://doi.org/10.1046/j.1440-1703.1998.00264.x Knoepp JD, Swank WT (1998) Rates of nitrogen mineralization across an elevation and vegetation gradient in the southern Appalachians. Plant Soil 204:235–241 Knoepp JD, Vose JM (2007) Regulation of nitrogen mineralization and nitrification in southern Appalachian ecosystems: separating the relative importance of biotic vs. abiotic controls. Pedobiologia 51:89–97. https://doi.org/10.1016/j.pedobi.2007.02.002 Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301. https://doi.org/10.1038/nature03226 Krishna AP, Kumar S (2013) Landslide hazard assessment along a mountain highway in the Indian Himalayan Region (IHR) using remote sensing and computational models. In: Michel U, Civco DL, Schulz K, Ehlers M, Nilolakopoulos KG (eds) Earth Resources and Environmental Remote Sensing/GIS Applications IV. International Society for Optics and Photonics, Proceedings of SPIE- 8993, Germany, pp 164–176. https://doi.org/10.1117/12.2029080 Marrs RH, Proctor J, Heaney A, Mountford MD (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76:466–482. https://doi.org/10.2307/2260606 Martinson GO, Corre MD, Veldkamp E (2013) Responses of nitrous oxide fluxes and soil nitrogen cycling to nutrient additions in montane forests along an elevation gradient in southern Ecuador. Biogeochemistry 112:625–636. https://doi.org/10.1007/s10533-012-9753-9 Maynard DG, Kalra YP, Crumbaugh JA (2008) Nitrate and exchangeable ammonium nitrogen. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Bota Raton, pp 71–80 Moser G, Leuschner C, Hertel D et al (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Chang Biol 17:2211–2226. https://doi.org/10.1111/j.1365-2486.2010.02367.x Mynard DG, Curran MP (2008) Bulk density measurement in forest soils. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton, pp 863–869 Nadelhoffer KJ, Shaver GR, Giblin A, Rastetter EB (1997) Potential impacts of climate change on nutrient cycling, decomposition, and productivity in arctic ecosystems. In: Oechel WC, Callaghan TV, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and arctic terrestrial ecosystems. Springer New York, NY, pp 349–364 Niboyet A, Le Roux X, Dijkstra P et al (2011) Testing interactive effects of global environmental changes on soil nitrogen cycling. Ecosphere 2:art56. https://doi.org/10.1890/ES10-00148.1 Nottingham AT, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Salinas N, Meir P (2015) Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12:6071–6083. https://doi.org/10.5194/bg-12-6071-2015 Nottingham AT, Turner BL, Whitaker J, Ostle N, Bardgett RD, McNamara NP, Salinas N, Meir P (2016) Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes. Biogeochemistry 127:217–230. https://doi.org/10.1007/s10533-015-0176-2 Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S (2016) Greenhouse gas emissions from soils—a review. Geochemistry 76:327–352. https://doi.org/10.1016/j.chemer.2016.04.002 Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609 Powers RF (1990) Nitrogen mineralization along an altitudinal gradient: interactions of soil temperature, moisture, and substrate quality. Forest Ecol Manag 30:19–29. https://doi.org/10.1016/0378-1127(90)90123-S Rawat VS, Chandra J (2014) Vegetational diversity analysis across different habitats in Garhwal Himalaya. Aust J Bot 2014:5–5. https://doi.org/10.1155/2014/538242 Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods, 3rd edn. Inkata Press, Melbourne Schütt M, Borken W, Spott O, Stange CF, Matzner E (2014) Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures. Soil Biol Biochem 69:320–327. https://doi.org/10.1016/j.soilbio.2013.11.014 Selmants PC, Adair KL, Litton CM, Giardina CP, Schwartz E (2016) Increases in mean annual temperature do not alter soil bacterial community structure in tropical montane wet forests. Ecosphere 7:e01296. https://doi.org/10.1002/ecs2.1296 Shaw MR, Harte J (2001) Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone. Glob Chang Biol 7:193–210. https://doi.org/10.1046/j.1365-2486.2001.00390.x Silver WL, Thompson AW, Herman DJ, Firestone MK (2011) Is there evidence for limitations to nitrogen mineralization in upper montane tropical forests? In: Scatena FN, Bruijnzeel LA, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 418–427 Smith P, Fang C, Julián JM, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43. https://doi.org/10.1016/S0065-2113(07)00001-6 Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J 60:1846–1855. https://doi.org/10.2136/sssaj1996.03615995006000060033x Stewart CG (2000) A test of nutrient limitation in two tropical montane forests using root ingrowth cores. Biotropica 32:369–373 Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22. https://doi.org/10.1890/0012-9658(1998)079[0010:EIONLO]2.0.CO;2 Unger M, Leuschner C, Homeier J (2010) Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests (NE Ecuador). Plant Soil 336:443–458. https://doi.org/10.1007/s11104-010-0494-z Wan X, Huang Z, He Z, Yu Z, Wang M, Davis MR, Yang Y (2015) Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 387:103–116. https://doi.org/10.1007/s11104-014-2277-4 Wang C, Chen Z, Unteregelsbacher S, Lu H, Gschwendtner S, Gasche R, Kolar A, Schloter M, Kiese R, Butterbach-Bahl K, Dannenmann M (2016) Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. Glob Chang Biol 22:2963–2978. https://doi.org/10.1111/gcb.13353 Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358. https://doi.org/10.1111/j.1469-185X.1992.tb00728.x Wilcke W, Leimer S, Peters T, Emck P, Rollenbeck R, Trachte K, Valarezo C, Bendix J (2013) The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Global Biogeochem Cy 27:1194–1204. https://doi.org/10.1002/2012GB004471 Yang Y, Ji C, Chen L, Ding J, Cheng X, Robinson D (2015) Edaphic rather than climatic controls over 13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau. Funct Ecol 29:839–848. https://doi.org/10.1111/1365-2435.12393 Yuan L, He N, Wen X et al (2016) Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems. Agric Ecosyst Environ 215:40–46. https://doi.org/10.1016/j.agee.2015.09.012 Zhang S, Chen D, Sun D, Wang X, Smith JL, du G (2012) Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai–Tibetan Plateau, China. Biol Fertil Soils 48:393–400. https://doi.org/10.1007/s00374-011-0634-5