Nitrogen storage capacity of phengitic muscovite and K-cymrite under the conditions of hot subduction and ultra high pressure metamorphism
Tài liệu tham khảo
Bebout, 1992, Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: implications for metamorphic devolatilization history, Geochim. Cosmochim. Ac., 56, 2839, 10.1016/0016-7037(92)90363-N
Bebout, 2013, Nitrogen: Highly volatile yet surprisingly compatible, Elements, 9, 333, 10.2113/gselements.9.5.333
Bebout, 2016, Pathways for nitrogen cycling in Earth’s crust and upper mantle: A review and new results for microporous beryl and cordierite, Am. Mineral., 101, 7, 10.2138/am-2016-5363
Bruno, 2002, Jadeite with the Ca-Eskola molecule from an ultra-high pressure metagranodiorite, Dora-Maira Massif, Western Alps, Contrib. Mineral. Petrol., 142, 515, 10.1007/s004100100307
Budde, 2001
Busigny, 2013, Nitrogen in the silicate Earth: Speciation and isotopic behavior during mineral–fluid interactions, Elements, 9, 353, 10.2113/gselements.9.5.353
Busigny, 2003, Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe), Earth Planet. Sc. Lett., 215, 27, 10.1016/S0012-821X(03)00453-9
Busigny, 2003, Ammonium quantification in muscovite by infrared spectroscopy, Chem. Geol., 198, 21, 10.1016/S0009-2541(02)00420-5
Busigny, 2004, Quantitative analysis of ammonium in biotite using infrared spectroscopy, Am. Mineral., 89, 1625, 10.2138/am-2004-11-1206
Busigny, 2011, Nitrogen isotopes in ophiolitic metagabbros: A re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere, Geochim. Cosmochim. Ac., 75, 7502, 10.1016/j.gca.2011.09.049
Carmichael, 1990, The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases, Rev. Mineral. Geochim., 24, 191
Chapman, 2019, The role of buoyancy in the fate of ultra-high-pressure eclogite, Sci. Reports, 9, 1
Connolly, 2005, Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sc. Lett., 236, 524, 10.1016/j.epsl.2005.04.033
Connolly, 2018, Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer, Earth Planet. Sc. Lett., 501, 90, 10.1016/j.epsl.2018.08.024
Dasgupta, 2013, Ingassing, storage, and outgassing of terrestrial carbon through geologic time, Rev. Mineral. Geochem., 75, 183, 10.2138/rmg.2013.75.7
Dieing, 2008, High-resolution, high-speed confocal Raman imaging, Vib. Spectrosc., 48, 22, 10.1016/j.vibspec.2008.03.004
Dobretsov, 2015, An integrate model of subduction: contributions from geology, experimental petrology, and seismic tomography, Russ. Geol. Geophys., 56, 13, 10.1016/j.rgg.2015.01.002
Domanik, 1996, The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: implications for deeply subducted sediments, Geochim. Cosmochim. Ac., 60, 4133, 10.1016/S0016-7037(96)00241-4
Duncan, 2015, Pressure and temperature dependence of CO2 solubility in hydrous rhyolitic melt: implications for carbon transfer to mantle source of volcanic arcs via partial melt of subducting crustal lithologies, Contrib. Mineral. Petrol., 169, 1, 10.1007/s00410-015-1144-5
Eguchi, 2017, CO2 content of andesitic melts at graphite-saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite, Contrib. Mineral. Petrol., 172, 1, 10.1007/s00410-017-1330-8
Elkins, 2006, Tracing nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front, Geochim. Cosmochim. Ac., 70, 5215, 10.1016/j.gca.2006.07.024
Evans, 2012, The redox budget of subduction zones, Earth Sci. Rev., 113, 11, 10.1016/j.earscirev.2012.03.003
Farmer, 1974, The layer silicates, 331
Fasshauer, 1997, Synthesis, structure, thermody- namic properties, and stability relations of K-cymrite, K[AlSi3O8] H2O, Phys. Chem. Miner., 24, 455, 10.1007/s002690050060
Ferrero, 2016, Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): Not evidence for ultrahigh-pressure conditions, Contrib. Mineral. Petrol., 171, 1, 10.1007/s00410-015-1220-x
Ferrero, 2018, Partial melting of ultramafic granulites from Dronning Maud Land, Antarctica: Constraints from melt inclusions and thermodynamic modeling, Am. Mineral., 103, 610, 10.2138/am-2018-6214
Foley, 2011, A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time, J. Petrol., 52, 1363, 10.1093/petrology/egq061
Förster, 2019, Partitioning of nitrogen during melting and recycling in subduction zones and the evolution of atmospheric nitrogen, Chem. Geol., 525, 334, 10.1016/j.chemgeo.2019.07.042
Frost, 1997, Experimental measurements of the fugacity of CO2 and graphite/diamond stability from 35 to 77 kbar at 925 to 1650°C, Geochim. Cosmochim. Ac., 61, 1565, 10.1016/S0016-7037(97)00035-5
Galvez, 2016, Implications for metal and volatile cycles from the pH of subduction zone fluids, Nature, 539, 420, 10.1038/nature20103
Grassi, 2011, The melting of carbonated pelites from 70 to 700 km depth, J. Petrol., 52, 765, 10.1093/petrology/egr002
Halama, 2010, Nitrogen recycling in subducted oceanic lithosphere: the record in high-and ultrahigh-pressure metabasaltic rocks, Geochim. Cosmochim. Ac., 74, 1636, 10.1016/j.gca.2009.12.003
Halama, 2014, Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle, Int. J. Earth Sci., 103, 2081, 10.1007/s00531-012-0782-3
Halama, 2017, Fluid-induced breakdown of white mica controls nitrogen transfer during fluid–rock interaction in subduction zones, Int. Geol. Rev., 59, 702, 10.1080/00206814.2016.1233834
Harlov, 2001, Characterisation of tobelite (NH4)Al2(AlSi3O10)(OH)2 and ND4-tobelite (ND4)Al2(AlSi3O10)(OD)2 using IR spectroscopy and Rietveld refinement of XRD spectra, Phys. Chem. Mineral., 28, 268, 10.1007/s002690000146
Harlow, 2004, Status report on stability of K-rich phases at mantle conditions, Lithos, 77, 647, 10.1016/j.lithos.2004.04.010
Harris, 2022, The behaviour of nitrogen during subduction of oceanic crust: Insights from in situ SIMS analyses of high-pressure rocks, Geochim. Cosmochim. Acta, 321, 16, 10.1016/j.gca.2022.01.018
Hermann, 2001, Experimental constraints on high pressure melting in subducted crust, Earth Planet. Sci. Lett., 188, 149, 10.1016/S0012-821X(01)00321-1
Hermann, 2008, Sediment melts at sub-arc depths: an experimental study, J. Petrol., 49, 717, 10.1093/petrology/egm073
Hermann, 2001, Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan), Contrib. Mineral. Petr., 141, 66, 10.1007/s004100000218
Hermann, 2013, Deep fluids in subducted continental crust, Elements, 9, 281, 10.2113/gselements.9.4.281
Hirschmann, 2018, Comparative deep Earth volatile cycles: The case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios, Earth Planet. Sc. Lett., 502, 262, 10.1016/j.epsl.2018.08.023
Honma, 1981, Distribution of ammonium in minerals of metamorphic and granitic rocks, Geochim. Cosmochim. Acta, 45, 983, 10.1016/0016-7037(81)90122-8
Huang, 2019, Extended Deep Earth Water Model for predicting major element mantle metasomatism, Geochim. Cosmochim. Acta, 254, 192, 10.1016/j.gca.2019.03.027
Hwang, 2004, Kokchetavite: a new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane, Contrib. Mineral. Petr., 148, 380, 10.1007/s00410-004-0610-2
Hwang, 2013, Oriented kokchetavite compound rods in clinopyroxene of Kokchetav ultrahigh-pressure rocks, J. Asian Earth Sci., 63, 56, 10.1016/j.jseaes.2012.09.003
Jackson, 2021, Warm and oxidizing slabs limit ingassing efficiency of nitrogen to the mantle, Earth Planet. Sci. Lett., 553, 10.1016/j.epsl.2020.116615
Johnson, 2000, Dehydration and melting experiments constrain the fate of subducted sediments, Geochem. Geophys. Geosyst., 1, 10.1029/1999GC000014
Kanzaki, 2012, Raman and NMR spectroscopic characterization of high-pressure K-cymrite (KAlSi3O8.H2O) and its anhydrous form (kokchetavite), J. Mineral. Petrol. Sci., 107, 114, 10.2465/jmps.111020i
Korsakov, A.V., Romanenko, A.V., Sokol, A.G., Musiyachenko, K.A., 2023. Raman spectroscopic study of the transformation of nitrogen-bearing K-cymrite during heating experiments: Origin of kokchetavite in high pressure metamorphic rocks. J. Raman Spectrosc. (submitted).
Korsakov, 2002, Garnet-biotite-clinozoisite gneiss: a new type of diamondiferous metamorphic rock from the Kokchetav Massif, Eur. J. Mineral., 14, 915, 10.1127/0935-1221/2002/0014-0915
Lebedev, A., (Ed.), 2012. Comprehensive Environmental Mass Spectrometry. ILM Publications.
Li, 2005, Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity, J. Geophys. Res.: Solid Earth, 110
Li, 2013, Nitrogen solubil- ity in upper mantle minerals, Earth Planet. Sci. Lett., 377, 311, 10.1016/j.epsl.2013.07.013
Li, 2015, Nitrogen distribution between aqueous fluids and silicate melts, Earth Planet. Sci. Lett., 411, 218, 10.1016/j.epsl.2014.11.050
Li, 2014, Nitrogen speciation in mantle and crustal flu- ids, Geochim. Cosmochim. Ac., 129, 13, 10.1016/j.gca.2013.12.031
Mallik, 2018, Nitrogen evolution within the Earth's atmosphere–mantle system assessed by recycling in subduction zones, Earth Planet. Sc. Lett., 482, 556, 10.1016/j.epsl.2017.11.045
Manning, 2020, Subduction-zone fluids, Elements, 16, 395, 10.2138/gselements.16.6.395
Marty, 2013, Nitrogen isotopic composition and density of the Archean atmosphere, Science, 342, 101, 10.1126/science.1240971
Massonne, H.-J., 1991. High-pressure, Low Temperature Metamorphism of Peliticand Other Litologies Based on Experiments in the System K2O-MgO-Al2O3-SiO2-H2O. Ph.D. thesis. Ruhr-Universitat Bochum, Bochum, Germany.
Massonne, 2011, Phase relations of siliceous marbles at ultrahigh pressure based on thermodynamic calculations: examples from the Kokchetav Massif, Kazakhstan and the Sulu terrane, China. Geol. J., 46, 114
Mikhail, 2014, Nitrogen speciation in upper mantle fluids and the origin of Earth's nitrogen-rich atmosphere, Nat. Geosci., 7, 816, 10.1038/ngeo2271
Mikhno, 2013, K2O prograde zoning pattern in clinopyroxene from the Kokchetav diamond-grade metamorphic rocks: Missing part of metamorphic history and location of second critical end point for calc-silicate system, Gondwana Res., 23, 920, 10.1016/j.gr.2012.07.020
Mikhno, 2013, Origin of K-cymrite and kokchetavite in the polyphase mineral inclusions from Kokchetav UHP calc-silicate rocks: evidence from confocal Raman imaging, Eur. J. Mineral., 25, 807, 10.1127/0935-1221/2013/0025-2321
Moore, 2007, Ammonia–water ice laboratory studies relevant to outer Solar System surfaces, Icarus, 190, 260, 10.1016/j.icarus.2007.02.020
Moore, 2007, Ammoniaewater ice laboratory studies relevant to outer Solar System surfaces, Icarus, 190, 260, 10.1016/j.icarus.2007.02.020
Moyen, 2009, High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”, Lithos, 112, 556, 10.1016/j.lithos.2009.04.001
Mposkos, 2001, Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic province established, Earth Planet. Sci. Lett., 192, 497, 10.1016/S0012-821X(01)00478-2
Mysen, 2019, Nitrogen in the Earth: abundance and transport, Prog. Earth Planet. Sci., 6, 38, 10.1186/s40645-019-0286-x
O’brien, 2003, High-pressure granulites: formation, recovery of peak conditions and implications for tectonics, J. Metamorph. Geol., 21, 3, 10.1046/j.1525-1314.2003.00420.x
Palyanov, 2010, Effect of nitrogen impurity on diamond crystal growth processes, Crystal Growth Des., 10, 3169, 10.1021/cg100322p
Perchuk, 2020, Melting and parageneses of Global subducting water-enriched sediment in closed and open systems: experiment and thermodynamic modeling, Russ. Geol. Geophys., 61, 571, 10.15372/RGG2019177
Petrichenko, 2000, Geochemical characteristics of organic matter in the Maikop series of the Kerch-Taman trough, Moscow Univ. Bull. Ser., 4, 64
Plank, 2014, The chemical composition of subducting sediments, 607
Plank, 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325, 10.1016/S0009-2541(97)00150-2
Plank, 2019, Subducting carbon, Nature, 574, 343, 10.1038/s41586-019-1643-z
Poli, 2002, Petrology of subducted slabs, Annu. Rev. Earth Planet. Sci., 2002, 207, 10.1146/annurev.earth.30.091201.140550
Pöter, 2004, Experimental determination of the ammonium partitioning among muscovite, K-feldspar, and aqueous chloride solutions, Lithos, 74, 67, 10.1016/j.lithos.2004.01.002
Romanenko, 2021, Crystal structures of K-cymrite and kokchetavite from single-crystal X-ray diffraction, Am. Mineral.: J. Earth Planet. Mater., 106, 404, 10.2138/am-2020-7407
Schmidt, M., Poli, S., 2014. Devolatilization during subduction. In: Treatise on Geochemistry, 2nd ed., pp. 669–701.
Schmidt, 2004, Melting and dissolution of subducting crust at high pressures: the key role of white mica, Earth Planet. Sci. Lett., 228, 65, 10.1016/j.epsl.2004.09.020
Shchepetova, 2017, Forbidden mineral assemblage coesite-disordered graphite in diamond-bearing kyanite gneisses (Kokchetav Massif), J. Raman Spectrosc., 48, 1606, 10.1002/jrs.5167
Sokol, 2015, High-temperature calibration of a multi-anvil high-pressure apparatus, High Pressure Res., 35, 139, 10.1080/08957959.2015.1017819
Sokol, 2018, Mineralogy and geochemistry of mud volcanic ejecta: a new look at old issues, Minerals, 8, 344, 10.3390/min8080344
Sokol, 2017, Carbon and Nitrogen Speciation in N-poor COHN Fluids at 6.3 GPa and 1100–1400 C, Sci. Rep., 7, 706, 10.1038/s41598-017-00679-7
Sokol, 2017, Carbon and nitrogen speciation in nitrogen-rich C–O–H–N fluids at 5.5–7.8 GPa, Earth Planet. Sc. Lett., 460, 234, 10.1016/j.epsl.2016.11.050
Sokol, 2018, Synthesis of NH4-substituted muscovite at 6.3 GPa and 1000°C: implications for nitrogen transport to the Earth’s Mantle, Dokl. Earth Sci., 479, 404, 10.1134/S1028334X18030315
Sokol, 2020, Cymrite as mineral clathrate: An overlooked redox insensitive transporter of nitrogen in the mantle, Gondwana Res., 79, 70, 10.1016/j.gr.2019.08.013
Som, 2016, Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels, Nat. Geosci., 9, 448, 10.1038/ngeo2713
Svensen, 2008, Nitrogen geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin, South Africa, Geochim. Cosmochim. Ac., 72, 4929, 10.1016/j.gca.2008.07.023
Sverjensky, 2019, Thermodynamic modelling of fluids from surficial to mantle conditions, J. Geol. Soc. London, 176, 348, 10.1144/jgs2018-105
Sverjensky, 2014, Important role for organic carbon in subduction-zone fluids in the deep carbon cycle, Nat. Geosci., 7, 909, 10.1038/ngeo2291
Syracuse, 2010, The global range of subduction zone thermal models, Phys. Earth Planet. Inter., 183, 73, 10.1016/j.pepi.2010.02.004
Thompson, 1998, The breakdown of potassium feldspar at high water pressures, Contrib. Mineral. Petr., 130, 176, 10.1007/s004100050358
Tumiati, 2017, Silicate dissolution boosts the CO2 concentrations in subduction fluids, Nat. Commun., 8, 1, 10.1038/s41467-017-00562-z
Turner, 2022, Sediment and ocean crust both melt at subduction zones, Earth Planet. Sc. Lett., 584, 10.1016/j.epsl.2022.117424
Vedder, 1965, Ammonium in muscovite, Geochim. Cosmochim. Ac., 29, 221, 10.1016/0016-7037(65)90019-0
Watenphul, 2009, High-pressure ammonium-bearing silicates: Implications for nitrogen and hydrogen storage in the Earth’s mantle, Am. Mineral., 94, 283, 10.2138/am.2009.2995
Watenphul, 2010, Ammonium-bearing clinopyroxene: A potential nitrogen reservoir in the Earth's mantle, Chem. Geol., 270, 240, 10.1016/j.chemgeo.2009.12.003
Yong, 2006, Heat capacity and phase equilibria of hollandite polymorph of KAlSi3O8, Phys. Chem. Miner., 33, 167, 10.1007/s00269-006-0063-4