Nitrogen release and pore formation through KOH activation of nitrogen-doped carbon materials: an evaluation of the literature
Tóm tắt
Từ khóa
Tài liệu tham khảo
Salinas-Torres D, Ruiz-Rosas R, Morallón E, Cazorla-Amorós D (2019) Strategies to enhance the performance of electrochemical capacitors based on carbon materials. Front Mater 6:115. https://doi.org/10.3389/fmats.2019.00115
Pérez-Mayoral E, Matos I, Bernardo M, Fonseca IM (2019) New and advanced porous carbon materials in fine chemical synthesis emerging precursors of porous carbons. Catalysts 9:133. https://doi.org/10.3390/catal9020133
Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556–2564. https://doi.org/10.1021/nn506394r
Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520. https://doi.org/10.1039/b813846j
Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251. https://doi.org/10.1002/adma.201304137
Lin T, Chen I-W, Liu F et al (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513. https://doi.org/10.1126/science.aab3798
Zhang J, Wang X, Qi G et al (2016) A novel N-doped porous carbon microsphere composed of hollow carbon nanospheres. Carbon 96:864–870. https://doi.org/10.1016/j.carbon.2015.10.045
Tan J, Chen H, Gao Y, Li H (2015) Nitrogen-doped porous carbon derived from citric acid and urea with outstanding supercapacitance performance. Electrochim Acta 178:144–152. https://doi.org/10.1016/j.electacta.2015.08.008
Li Y, Wang G, Wei T et al (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175. https://doi.org/10.1016/j.nanoen.2015.10.038
Gong K, Du F, Xia Z et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. https://doi.org/10.1126/science.1168049
Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E (2005) Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem Phys Lett 404:53–58. https://doi.org/10.1016/j.cplett.2005.01.074
Sun C-L, Wang H-W, Hayashi M et al (2006) Atomic-scale deformation in n-doped carbon nanotubes. J Am Chem Soc 128:8368–8369. https://doi.org/10.1021/ja0587852
Strelko VV, Kuts VS, Thrower PA (2000) On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon 38:1499–1503. https://doi.org/10.1016/S0008-6223(00)00121-4
Guo D, Shibuya R, Akiba C et al (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351:361–365. https://doi.org/10.1126/science.aad0832
Liu W, Wang C, Herold F et al (2019) Oxidative dehydrogenation on nanocarbon: Effect of heteroatom doping. Appl Catal B Environ 258:117982. https://doi.org/10.1016/j.apcatb.2019.117982
Tang Z, Pei Z, Wang Z et al (2018) Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 130:532–543. https://doi.org/10.1016/j.carbon.2018.01.055
Liu L, Zeng G, Chen J et al (2018) N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 49:393–402. https://doi.org/10.1016/j.nanoen.2018.04.061
Wang Y, Xuan H, Lin G et al (2016) A melamine-assisted chemical blowing synthesis of N-doped activated carbon sheets for supercapacitor application. J Power Sources 319:262–270. https://doi.org/10.1016/j.jpowsour.2016.04.069
Teng H, Wang S-C (2000) Preparation of porous carbons from phenol–formaldehyde resins with chemical and physical activation. Carbon 38:817–824. https://doi.org/10.1016/S0008-6223(99)00160-8
Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710. https://doi.org/10.1039/c2jm34066f
Sevilla M, Valle-Vigón P, Fuertes AB (2011) N-Doped Polypyrrole-Based Porous Carbons for CO 2 Capture. Adv Funct Mater 21:2781–2787. https://doi.org/10.1002/adfm.201100291
Qie L, Chen W, Xu H et al (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6:2497. https://doi.org/10.1039/c3ee41638k
Otowa T, Tanibata R, Itoh M (1993) Production and adsorption characteristics of MAXSORB: High-surface-area active carbon. Gas Sep Purif 7:241–245. https://doi.org/10.1016/0950-4214(93)80024-Q
Pietrzak R, Wachowska H, Nowicki P (2006) Preparation of nitrogen-enriched activated carbons from brown coal. Energy Fuels 20:1275–1280. https://doi.org/10.1021/ef0504164
Ma C, Chen X, Long D et al (2017) High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor. Carbon 118:699–708. https://doi.org/10.1016/j.carbon.2017.03.075
An L, Liu S, Wang L et al (2019) Novel nitrogen-doped porous carbons derived from graphene for effective CO2 capture. Ind Eng Chem Res 58:3349–3358. https://doi.org/10.1021/acs.iecr.8b06122
Ilnicka A, Lukaszewicz J (2018) Marine and freshwater feedstocks as a precursor for nitrogen-containing carbons: a review. Mar Drugs 16:142. https://doi.org/10.3390/md16050142
Mostazo-López MJ, Salinas-Torres D, Ruiz-Rosas R et al (2019) Nitrogen-doped superporous activated carbons as electrocatalysts for the oxygen reduction reaction. Materials 12:1346. https://doi.org/10.3390/ma12081346
Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1173. https://doi.org/10.1039/C5TA08620E
Terrones M, Redlich P, Grobert N et al (1999) Carbon nitride nanocomposites: formation of aligned Cxny nanofibers. Adv Mater 11:655–658. https://doi.org/10.1002/(SICI)1521-4095(199906)11:8%3c655::AID-ADMA655%3e3.0.CO;2-6
Zhu T, Zhou J, Li Z et al (2014) Hierarchical porous and N-doped carbon nanotubes derived from polyaniline for electrode materials in supercapacitors. J Mater Chem A 2:12545. https://doi.org/10.1039/C4TA01465K
Paraknowitsch JP, Zhang J, Su D et al (2010) Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv Mater 22:87–92. https://doi.org/10.1002/adma.200900965
Yang W, Fellinger T-P, Antonietti M (2011) Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J Am Chem Soc 133:206–209. https://doi.org/10.1021/ja108039j
Gao F, Shao G, Qu J et al (2015) Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes. Electrochim Acta 155:201–208. https://doi.org/10.1016/j.electacta.2014.12.069
Farma R, Deraman M, Talib IA et al (2013) Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int J Electrochem Sci 8:18
Liu Z, Du Z, Song H et al (2014) The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption. J Colloid Interface Sci 416:124–132. https://doi.org/10.1016/j.jcis.2013.10.061
Zhou J, Wang M, Li X (2018) Facile preparation of nitrogen-doped high-surface-area porous carbon derived from sucrose for high performance supercapacitors. Appl Surf Sci 462:444–452. https://doi.org/10.1016/j.apsusc.2018.08.158
Yun YS, Yoon G, Kang K, Jin HJ (2014) High-performance supercapacitors based on defect-engineered carbon nanotubes. Carbon 80:246–253. https://doi.org/10.1016/j.carbon.2014.08.063
Jurewicz K, Babeł K, Źiółkowski A, Wachowska H (2003) Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim Acta 48:1491–1498. https://doi.org/10.1016/S0013-4686(03)00035-5
Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140. https://doi.org/10.1016/j.carbon.2018.02.024
Hunjan MK, Panday S, Gupta A, Bhaumik J, Das P, Laha JK (2021) Recent advances in functionalization of pyrroles and their translational potential. Chem Rec 21:1–67. https://doi.org/10.1002/tcr.202100010
Pels JR, Kapteijn F, Moulijn JA et al (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653. https://doi.org/10.1016/0008-6223(95)00154-6
Bagreev A, Angel Menendez J, Dukhno I et al (2004) Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon 42:469–476. https://doi.org/10.1016/j.carbon.2003.10.042
Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013. https://doi.org/10.1039/C2TA00028H
Xiao B, Boudou JP, Thomas KM (2005) Reactions of nitrogen and oxygen surface groups in nanoporous carbons under inert and reducing atmospheres. Langmuir 21:3400–3409. https://doi.org/10.1021/la0472495
Pietrzak R (2009) XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel 88:1871–1877. https://doi.org/10.1016/j.fuel.2009.04.017
Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A (2003) Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 41:267–275. https://doi.org/10.1016/S0008-6223(02)00279-8
Raymundo-Piñero E, Azaïs P, Cacciaguerra T et al (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795. https://doi.org/10.1016/j.carbon.2004.11.005
Li Z, Guo K, Chen X (2017) Controllable synthesis of nitrogen-doped mesoporous carbons for supercapacitor applications. RSC Adv 7:30521–30532. https://doi.org/10.1039/C7RA02701J
Sun L, Wang C, Zhou Y et al (2014) Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors. J Solid State Electrochem 18:49–58. https://doi.org/10.1007/s10008-013-2227-8
Tsubouchi N, Nishio M, Mochizuki Y (2016) Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin. Appl Surf Sci 371:301–306. https://doi.org/10.1016/j.apsusc.2016.02.200
Qi J, Jin B, Bai P et al (2019) Template-free preparation of anthracite-based nitrogen-doped porous carbons for high-performance supercapacitors and efficient electrocatalysts for the oxygen reduction reaction. RSC Adv 9:24344–24356. https://doi.org/10.1039/C9RA04791C
Shao L, Liu M, Huang J, Liu Y-N (2018) CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers. J Colloid Interface Sci 513:304–313. https://doi.org/10.1016/j.jcis.2017.11.043
Lee D-W, Jin M-H, Oh D et al (2017) Straightforward synthesis of hierarchically porous nitrogen-doped carbon via pyrolysis of chitosan/urea/KOH mixtures and its application as a support for formic acid dehydrogenation catalysts. ACS Sustain Chem Eng 5:9935–9944. https://doi.org/10.1021/acssuschemeng.7b01888
Fuertes AB, Sevilla M (2015) High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high-performance ionic liquid-based supercapacitors. Carbon 94:41–52. https://doi.org/10.1016/j.carbon.2015.06.028
Chen M, Xuan H, Zheng X et al (2017) N-doped mesoporous carbon by a hard-template strategy associated with chemical activation and its enhanced supercapacitance performance. Electrochim Acta 238:269–277. https://doi.org/10.1016/j.electacta.2017.04.034
Ferrero GA, Fuertes AB, Sevilla M (2015) N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J Mater Chem A 3:2914–2923. https://doi.org/10.1039/C4TA06022A
Jiang J, Bao L, Qiang Y et al (2015) Sol-gel process-derived rich nitrogen-doped porous carbon through KOH activation for supercapacitors. Electrochim Acta 158:229–236. https://doi.org/10.1016/j.electacta.2015.01.144
Zhou M, Pu F, Wang Z, Guan S (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194. https://doi.org/10.1016/j.carbon.2013.10.079
Son Y-R, Heo Y-J, Cho E-A, Park S-J (2018) The influence of carbonization temperature and KOH activation ratio on the microporosity of n-doped activated carbon materials and their supercapacitive behaviors. Compos Res 31:267–275. https://doi.org/10.7234/COMPOSRES.2018.31.5.267
Feng X, Xie G, Wang Z et al (2018) Template-free synthesis of nitrogen-doped hierarchical porous carbon for supercapacitor electrodes. J Mater Sci Mater Electron 29:9673–9682. https://doi.org/10.1007/s10854-018-9004-5
Cui Y, Wang H, Xu X et al (2018) Nitrogen-doped porous carbons derived from a natural polysaccharide for multiple energy storage devices. Sustain Energy Fuels 2:381–391. https://doi.org/10.1039/C7SE00443E
Rehman A, Park S-J (2019) Tunable nitrogen-doped microporous carbons: Delineating the role of optimum pore size for enhanced CO2 adsorption. Chem Eng J 362:731–742. https://doi.org/10.1016/j.cej.2019.01.063
Li Y, Zou B, Hu C, Cao M (2016) Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion. Carbon 99:79–89. https://doi.org/10.1016/j.carbon.2015.11.074
Shao L, Sang Y, Huang J (2019) Imidazole-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Microporous Mesoporous Mater 275:131–138. https://doi.org/10.1016/j.micromeso.2018.08.025
Sivadas DL, Vijayan S, Rajeev R et al (2016) Nitrogen-enriched microporous carbon derived from sucrose and urea with superior CO2 capture performance. Carbon 109:7–18. https://doi.org/10.1016/j.carbon.2016.07.057