Nitrogen-doped carbon-encapsulated SnO<sub>2</sub>–SnS/graphene sheets with improved anodic performance in lithium ion batteries

Journal of Materials Chemistry A - Tập 3 Số 47 - Trang 24148-24154
Jieqiong Shan1,2,3,4, Yuxin Liu1,2,3,4, Ping Liu1,5,3,4, Yanshan Huang1,5,3,4, Yuezeng Su1,6,3,4, Dongqing Wu1,5,3,4, Xinliang Feng7,1,5,3,4
1P. R. China
2School of Aeronautics and Astronautics, Shanghai Jiao Tong University, 800 Dongchuan RD,Shanghai,P. R. China
3Shanghai
4Shanghai Jiao Tong University
5School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD,Shanghai,P. R. China
6School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD,Shanghai,P. R. China
7Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universitaet Dresden,Dresden,Germany

Tóm tắt

A dual-doping approach for N–C@SnO2–SnS/GN with 2D core–shell architecture has been developed. Used as the anode material in LIBs, it delivers a high specific capacity of 1236 mA h g−1 at a current density of 0.1 A g−1 after 110 cycles.

Từ khóa


Tài liệu tham khảo

Reddy, 2013, Chem. Rev., 113, 5364, 10.1021/cr3001884

Sciortino, 2012, Angew. Chem., Int. Ed., 51, 9944, 10.1002/anie.201207301

Han, 2013, Small, 9, 1173, 10.1002/smll.201203155

Bruce, 2008, Angew. Chem., Int. Ed., 47, 2930, 10.1002/anie.200702505

Derrien, 2007, Adv. Mater., 19, 2336, 10.1002/adma.200700748

Zhu, 2014, Nano Lett., 14, 153, 10.1021/nl403631h

Luo, 2012, Adv. Mater., 24, 3538, 10.1002/adma.201201173

Botas, 2015, J. Mater. Chem. A, 3, 13402, 10.1039/C5TA03265B

Nam, 2015, J. Mater. Chem. A, 3, 11021, 10.1039/C5TA00884K

Zhou, 2014, ACS Appl. Mater. Interfaces, 6, 7434, 10.1021/am5007194

Hu, 2015, J. Mater. Chem. A, 3, 15097, 10.1039/C5TA03401A

Chen, 2014, Dalton Trans., 43, 3137, 10.1039/C3DT52661E

Aurbach, 2002, Chem. Mater., 14, 4155, 10.1021/cm021137m

Huang, 2014, Small, 10, 2226, 10.1002/smll.201303423

Su, 2012, ACS Nano, 6, 8349, 10.1021/nn303091t

Lou, 2009, Adv. Mater., 21, 2536, 10.1002/adma.200803439

Choi, 2014, Small, 10, 474, 10.1002/smll.201301483

Luo, 2012, Energy Environ. Sci., 5, 5226, 10.1039/C1EE02800F

Cai, 2012, ACS Appl. Mater. Interfaces, 4, 4093, 10.1021/am300873n

Vaughn, 2012, Chem. Commun., 48, 5608, 10.1039/c2cc32033a

Li, 2006, Electrochim. Acta, 52, 1383, 10.1016/j.electacta.2006.07.041

Liu, 2015, J. Mater. Chem. A, 3, 5259, 10.1039/C5TA00431D

Wang, 2015, J. Mater. Chem. A, 3, 3659, 10.1039/C4TA06384H

Li, 2012, Chem. Commun., 48, 1201, 10.1039/C1CC14764A

Meng, 2011, Carbon, 49, 1133, 10.1016/j.carbon.2010.11.028

Liang, 2013, ACS Appl. Mater. Interfaces, 5, 12148, 10.1021/am404072k

Zhou, 2013, Adv. Mater., 25, 2152, 10.1002/adma.201300071

Wang, 2012, Adv. Funct. Mater., 22, 2682, 10.1002/adfm.201103110

Wood, 2014, Energy Environ. Sci., 7, 1212, 10.1039/C3EE44078H

Zheng, 2014, Nat. Commun., 5, 5261, 10.1038/ncomms6261

Kang, 2010, Electrochem. Commun., 12, 307, 10.1016/j.elecom.2009.12.025

Lee, 2012, J. Am. Ceram. Soc., 95, 2272, 10.1111/j.1551-2916.2012.05194.x

Bose, 2002, J. Power Sources, 107, 138, 10.1016/S0378-7753(01)00995-8

Zhu, 2013, Nanoscale, 5, 5499, 10.1039/c3nr00467h

Zhang, 2012, Nanoscale, 4, 5440, 10.1039/c2nr31154b

Wen, 2013, J. Mater. Chem. A, 1, 12334, 10.1039/c3ta12683h

Yang, 2013, RSC Adv., 3, 14016, 10.1039/c3ra41290c

Ohta, 2009, Mater. Trans., 50, 1885, 10.2320/matertrans.M2009060

Zhou, 2015, J. Mater. Chem. A, 3, 1068, 10.1039/C4TA05235H

Liu, 2014, Nano Energy, 6, 73, 10.1016/j.nanoen.2014.03.010

Hsu, 2012, J. Mater. Chem., 22, 21533, 10.1039/c2jm34654k

Wei, 2012, J. Phys. Chem. C, 116, 1034, 10.1021/jp209805c

Chen, 2013, Energy Environ. Sci., 6, 3331, 10.1039/c3ee42366b

Wang, 2012, ACS Catal., 2, 781, 10.1021/cs200652y

Chen, 2013, Adv. Mater., 25, 3192, 10.1002/adma.201300515

Tian, 2014, Nanoscale, 6, 6075, 10.1039/C4NR00454J

Reddy, 2010, ACS Nano, 4, 6337, 10.1021/nn101926g

Cheng, 2011, Thin Solid Films, 520, 837, 10.1016/j.tsf.2011.01.355

Chen, 2004, J. Cryst. Growth, 260, 469, 10.1016/j.jcrysgro.2003.09.009

Zainal, 1996, Sol. Energy Mater. Sol. Cells, 40, 347, 10.1016/0927-0248(95)00157-3

Tang, 2013, Energy Environ. Sci., 6, 2447, 10.1039/c3ee40759d

Choi, 2004, Appl. Phys. Lett., 85, 5742, 10.1063/1.1835994

Hao, 2010, Adv. Mater., 22, 853, 10.1002/adma.200903765

Zelenak, 2008, Microporous Mesoporous Mater., 116, 358, 10.1016/j.micromeso.2008.04.023

Kaufman, 1998, American Physical Society, 39, 13053

Yu, 2002, Diamond Relat. Mater., 11, 1633, 10.1016/S0925-9635(02)00111-5

Wang, 2008, J. Electrochem. Soc., 155, A658, 10.1149/1.2953497

Li, 2011, J. Electrochem. Soc., 158, A296, 10.1149/1.3532032

Lou, 2009, Chem. Mater., 21, 2868, 10.1021/cm900613d

Li, 2007, Electrochem. Commun., 9, 49, 10.1016/j.elecom.2006.08.019

Zhang, 2012, J. Mater. Chem., 22, 23091, 10.1039/c2jm34864k

Wang, 2014, ACS Appl. Mater. Interfaces, 6, 3427, 10.1021/am405557c

Wu, 2013, J. Mater. Chem. A, 1, 7181, 10.1039/c3ta10920h

Wang, 2012, Energy Environ. Sci., 5, 5252, 10.1039/C1EE02831F

Su, 2015, Angew. Chem., Int. Ed., 54, 1812, 10.1002/anie.201410154

Jiang, 2015, J. Mater. Chem. A, 3, 11847, 10.1039/C5TA01848J

Ding, 2015, J. Mater. Chem. A, 3, 7100, 10.1039/C5TA00399G

Zhu, 2015, ACS Appl. Mater. Interfaces, 7, 2745, 10.1021/am507826d

Tang, 2014, Nanoscale, 6, 14679, 10.1039/C4NR05519E

Wu, 2015, Angew. Chem., Int. Ed., 54, 7354, 10.1002/anie.201503072

Li, 2015, J. Mater. Chem. A, 3, 2158, 10.1039/C4TA05420B

Wang, 2014, Nano Lett., 14, 1164, 10.1021/nl4038592