Nitrogen‐Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis

Advanced Functional Materials - Tập 30 Số 47 - 2020
Chengjie Lu1, Yang Li1, Bingzhen Yan1, Liangbo Sun2, Peigen Zhang1, Wei Zhang1, ZhengMing Sun1
1School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
2Center of Analysis and Measurement, Harbin Institute of Technology, Harbin, 150001 P. R. China

Tóm tắt

Abstract

Nitrogen doping has been proven to be a facile modification strategy to improve the electrochemical performance of 2D MXenes, a group of promising candidates for energy storage applications. However, the underlying mechanisms, especially the positions of nitrogen dopants, and its effect on the electrical properties of MXenes, are still largely unexplored. Herein, a comprehensive study is carried out to disclose the nitrogen doping mechanism in Ti3C2 MXene, by employing theoretical simulation and experimental characterization. Three possible sites are found in Ti3C2Tx (T = F, OH, and O) to accommodate the nitrogen dopants: lattice substitution (for carbon), function substitution (for –OH), and surface absorption (on –O). Moreover, electrochemical test results confirm that all the three kinds of nitrogen dopants are favorable for improving the specific capacitance of the Ti3C2 electrode, and the underlying factors are successfully distinguished. By revealing the nitrogen doping mechanisms in Ti3C2 MXene, this work provides theoretical guidelines for modulating the electrochemical properties of MXene materials for energy storage applications.

Từ khóa


Tài liệu tham khảo

10.1039/c3ta11385j

10.1016/j.jpowsour.2014.12.025

10.1016/j.jechem.2019.01.016

10.1016/j.physleta.2017.04.022

10.1021/acsaem.9b01528

10.1016/j.cej.2019.04.203

10.1016/j.cis.2018.07.001

10.1126/science.aab3798

10.1007/s11244-009-9289-y

10.1016/j.apsusc.2019.05.149

10.1021/cs200652y

10.1021/nn200766e

10.1016/j.jpowsour.2008.10.024

10.1002/adma.201102306

10.1126/science.1241488

10.1002/adma.201304138

10.1021/nn204153h

Yang C. H., 2018, Adv. Funct. Mater., 28, 11

10.1039/C8CS00324F

10.1016/j.elecom.2014.09.002

10.1073/pnas.1414215111

10.1002/aenm.201702485

10.1149/2.1091709jes

10.1002/adma.201502467

10.1016/j.nanoen.2017.06.009

10.1039/C9TA00076C

10.1039/C8TC02156B

10.1002/aenm.201802087

10.1039/C6CP06018H

10.1021/acs.jpcc.7b03057

10.1038/ncomms2664

10.1016/j.jssc.2013.09.010

10.1039/C4CC01646G

10.1103/PhysRevB.61.14095

10.1149/2.0041706jes

10.1016/j.jhazmat.2017.06.004

10.1016/j.apsusc.2018.12.081

10.1021/acsnano.6b06597

Yoon Y., 2018, Adv. Energy Mater., 8, 11

10.1002/aenm.201500589

10.1002/adfm.201902953

10.1016/j.mtcomm.2019.100713

10.1002/cssc.201803032

10.1039/C7TA09153B

10.1021/nn302147s

10.1021/jp8088269

10.1016/j.jpowsour.2012.09.075

10.1016/j.electacta.2019.01.122

10.1088/2053-1583/aabb81

10.1016/j.carbon.2018.08.025

10.1021/acs.chemmater.9b00401

10.1103/PhysRevB.50.17953

10.1103/PhysRevLett.77.3865

10.1103/PhysRevB.13.5188

10.1021/ja308463r

10.1016/j.ensm.2019.09.013