Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking

Yasuko Iwakiri1,2,3,4,5, Ayano Satoh6,5, Suvro Chatterjee7, Derek Toomre6,8, Cécile Chalouni6,5, David Fulton9, Roberto J. Groszmann1,2,4,5, Vijay H. Shah7, William C. Sessa3,5
1*Section of Digestive Diseases,
2Department of Veterans Affairs
3Departments of Pharmacology and
4Hepatic Hemodynamic Laboratory, VA Connecticut Healthcare System, West Haven, CT 06516;
5Yale University
6Cell Biology, and
7Gastroenterology Research Unit, Department of Physiology and Tumor Biology Program, Mayo Clinic, Rochester, MN 55905; and
8Institute for Cancer Research, Yale University School of Medicine, New Haven, CT 06510;
9**Vascular Biology Center and Department of Pharmacology, Medical College of Georgia, Augusta, GA 30912

Tóm tắt

Nitric oxide (NO) is a highly diffusible and short-lived physiological messenger. Despite its diffusible nature, NO modifies thiol groups of specific cysteine residues in target proteins and alters protein function via S-nitrosylation. Although intracellular S-nitrosylation is a specific posttranslational modification, the defined localization of an NO source (nitric oxide synthase, NOS) with protein S-nitrosylation has never been directly demonstrated. Endothelial NOS (eNOS) is localized mainly on the Golgi apparatus and in plasma membrane caveolae. Here, we show by using eNOS targeted to either the Golgi or the nucleus that S-nitrosylation is concentrated at the primary site of eNOS localization. Furthermore, localization of eNOS on the Golgi enhances overall Golgi protein S-nitrosylation, the specific S-nitrosylation of N -ethylmaleimide-sensitive factor and reduces the speed of protein transport from the endoplasmic reticulum to the plasma membrane in a reversible manner. These data indicate that local NOS action generates organelle-specific protein S-nitrosylation reactions that can regulate intracellular transport processes.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.84.24.9265

10.1073/pnas.95.13.7631

10.1128/MCB.23.16.5726-5737.2003

10.1083/jcb.200104008

10.1126/science.284.5414.651

10.1073/pnas.74.8.3203

10.1038/nrm1569

10.1073/pnas.89.1.444

10.1006/niox.1996.0112

10.1074/jbc.C100746200

10.1016/S0092-8674(00)00054-4

10.1038/416337a

10.1038/35054560

10.1073/pnas.0409876102

10.1126/science.1119407

10.1074/jbc.M413058200

10.1074/jbc.M510421200

10.1016/S0092-8674(02)00723-7

10.1038/380221a0

10.1111/j.1469-7793.2001.00855.x

10.1002/jcp.1085

10.1074/jbc.271.44.27237

10.1074/jbc.270.30.17641

10.1073/pnas.93.13.6448

10.1074/jbc.272.41.25437

10.1083/jcb.137.7.1525

10.1177/002215540205000604

10.1152/ajpcell.00162.2005

10.1021/ac9801723

10.1016/j.freeradbiomed.2005.03.017

10.1093/jxb/erl070

10.1016/S0891-5849(02)00955-3

10.1074/jbc.M106302200

10.1073/pnas.95.5.2175

10.1083/jcb.143.6.1485

10.1016/j.cub.2004.10.045

10.1016/S0092-8674(03)00803-1

10.1179/135100001101536337

10.1038/35068596

10.1042/bj3310659

10.1016/S0092-8674(04)00131-X

10.1016/S0092-8674(01)00495-0

10.1038/35055042

10.1083/jcb.200207045

AJ Gow, CW Davis, D Munson, H Ischiropoulos Methods Mol Biol 279, 167–172 (2004).

10.1038/35055104

10.1126/stke.2001.86.pl1