Nitrate tolerance as a model of vascular dysfunction: Roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress
Tóm tắt
Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction and chronic congestive heart failure. Amajor therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents. The mechanisms underlying nitrate tolerance remain incompletely defined and are likely multifactorial. One mechanism seems to be a diminished bioconversion of nitroglycerin, another seems to be the induction of vascular oxidative stress, and a third may include neurohumoral adaptations. Recent studies have revealed that mitochondrial reactive oxygen species (ROS) formation and a subsequent oxidative inactivation of nitrate reductase, the mitochondrial aldehyde dehydrogenase (ALDH-2), play an important role in the development of nitrate and crosstolerance. The present review focus first on the role of oxidative stress and second on the role of ALDH-2 in organic nitrate bioactivation leading to the development of tolerance and cross-tolerance (endothelial dysfunction) in response to nitroglycerin treatment. Recently, the role of mitochondrial oxidative stress in the development of nitrate tolerance was demonstrated in a mouse model with a heterozygous deletion of manganese superoxide dismutase (MnSOD+/−), which is the mitochondrial isoform of this enzyme. Studies from our own laboratory have provided evidence for cross-talk between mitochondrial and cytosolic (Nox-dependent) sources of ROS. We close this review by focusing on the protective properties of the organic nitrate pentaerithrityl tetranitrate, which upregulates enzymes that have strong antioxidative activity, such as heme oxygenase-1 and ferritin, thereby preventing the development of tolerance and endothelial dysfunction.
Tài liệu tham khảo
Abou-Mohamed G, Johnson JA, Jin L, El-Remessy AB, Do K, Kaesemeyer WH, Caldwell RB, Caldwell RW: Roles of superoxide, peroxynitrite, and protein kinase c in the development of tolerance to nitroglycerin. J Pharmacol Exp Ther, 2004, 308, 289–299.
Abrams J: Mechanisms of action of the organic nitrates in the treatment of myocardial ischemia. Am J Cardiol, 1992, 70, 30B–42B.
Arnold WP, Mittal CK, Katsuki S, Murad F: Nitric oxide activates guanylate cyclase and increases guanosine 3’:5’-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA, 1977, 74, 3203–3207.
Bachschmid M, Schildknecht S, Ullrich V: Redox regulation of vascular prostanoid synthesis by the nitric oxide-superoxide system. Biochem Biophys Res Commun, 2005, 338, 536–542.
Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol Cell Physiol, 1996, 271, C1424–1437.
Berkenboom G, Fontaine D, Unger P, Baldassarre S, Preumont N, Fontaine J: Absence of nitrate tolerance after long-term treatment with ramipril: An endotheliumdependent mechanism. J Cardiovasc Pharmacol, 1999, 34, 547–553.
Bilska A, W³odek L: Lipoic acid–the drug of the future? Pharmacol Rep, 2005, 57, 570–577.
Brandes RP: Triggering mitochondrial radical release: A new function for NADPH oxidases. Hypertension, 2005, 45, 847–848.
Cai H, Harrison DG: Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res, 2000, 87, 840–844.
Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D: Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science, 2008, 321, 1493–1495.
Chen Z, Stamler JS: Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase. Trends Cardiovasc Med, 2006, 16, 259–265.
Chen Z, Zhang J, Stamler JS: Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci USA, 2002, 99, 8306–8311.
Cheng ZJ, Vapaatalo H, Mervaala E: Angiotensin II and vascular inflammation. Med Sci Monit, 2005, 11, RA194–205.
Daiber A, Gori T: Vascular tolerance to nitroglycerin in ascorbate deficiency–results are in favor of an important role of oxidative stress in nitrate tolerance. Cardiovasc Res, 2008, 79, 722–723.
Daiber A, Münzel T: Oxidative stress, redoxregulation and NO-bioavailability–experimental and clinical aspects (German). Steinkopff Verlag, Darmstadt, 2006.
Daiber A, Oelze M, Coldewey M, Bachschmid M, Wenzel P, Sydow K, Wendt M et al.: Oxidative stress and mitochondrial aldehyde dehydrogenase activity: A comparison of pentaerythritol tetranitrate with other organic nitrates. Mol Pharmacol, 2004, 66, 1372–1382.
Daiber A, Oelze M, Coldewey M, Kaiser K, Huth C, Schildknecht S, Bachschmid M et al.: Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial effects on prognosis in patients with congestive heart failure. Biochem Biophys Res Commun, 2005, 338, 1865–1874.
Daiber A, Oelze M, Sulyok S, Coldewey M, Schulz E, Treiber N, Hink U et al.: Heterozygous deficiency of manganese superoxide dismutase in mice (Mn-SOD+/−): A novel approach to assess the role of oxidative stress for the development of nitrate tolerance. Mol Pharmacol, 2005, 68, 579–588.
Daiber A, Ullrich V: Radical chemistry in the organism: nitrogen monoxide, superoxide and peroxynitrite (German). Chemie in unserer Zeit, 2002, 36, 366–375.
Daiber A, Wenzel P, Oelze M, Munzel T: New insights into bioactivation of organic nitrates, nitrate tolerance and cross-tolerance. Clin Res Cardiol, 2008, 97, 12–20.
Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S, San Martin A et al.: Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation, 2005, 112, 2668–2676.
Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S et al.: Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res, 2007, 100, 894–903.
Doughan AK, Harrison DG, Dikalov SI: Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: Linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res, 2008, 102, 488–496.
Dragoni S, Gori T, Lisi M, Di Stolfo G, Pautz A, Kleinert H, Parker JD: Pentaerythrityl tetranitrate and nitroglycerin, but not isosorbide mononitrate, prevent endothelial dysfunction induced by ischemia and reperfusion. Arterioscler Thromb Vasc Biol, 2007, 27, 1955–1959.
Dudek M, Bednarski M, Bilska A, Iciek M, Soko³owska-Je¿ewicz M, Filipek B, W³odek L: The role of lipoic acid in prevention of nitroglycerin tolerance. Eur J Pharmacol, 2008, 591, 203–210.
Dulak J, Deshane J, Jozkowicz A, Agarwal A: Heme oxygenase-1 and carbon monoxide in vascular pathobiology: Focus on angiogenesis. Circulation, 2008, 117, 231–241.
Esplugues JV, Rocha M, Nunez C, Bosca I, Ibiza S, Herance JR, Ortega A et al.: Complex I dysfunction and tolerance to nitroglycerin: An approach based on mitochondrial-targeted antioxidants. Circ Res, 2006, 99, 1067–1075.
Fan Q, Gao F, Zhang L, Christopher TA, Lopez BL, Ma XL: Nitrate tolerance aggravates postischemic myocardial apoptosis and impairs cardiac functional recovery after ischemia. Apoptosis, 2005, 10, 1235–1242.
Florczyk UM, Jozkowicz A, Dulak J: Biliverdin reductase: New features of an old enzyme and its potential therapeutic significance. Pharmacol Rep, 2008, 60, 38–48.
Forstermann U, Munzel T: Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation, 2006, 113, 1708–1714.
Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Q, Taylor WR, Harrison DG et al.: p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res, 1997, 80, 45–51.
Fung HL: Biochemical mechanism of nitroglycerin action and tolerance: Is this old mystery solved? Annu Rev Pharmacol Toxicol, 2004, 44, 67–85.
Gao J, Xiong Y, Ho YS, Liu X, Chua CC, Xu X, Wang H et al.: Glutathione peroxidase 1-deficient mice are more susceptible to doxorubicin-induced cardiotoxicity. Biochim Biophys Acta, 2008, 1783, 2020–2029.
Gokce N, Keaney JF, Jr., Hunter LM, Watkins MT, Nedeljkovic ZS, Menzoian JO, Vita JA: Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol, 2003, 41, 1769–1775.
Gori T, Al-Hesayen A, Jolliffe C, Parker JD: Comparison of the effects of pentaerythritol tetranitrate and nitroglycerin on endothelium-dependent vasorelaxation in male volunteers. Am J Cardiol, 2003, 91, 1392–1394.
Gori T, Di Stolfo G, Sicuro S, Dragoni S, Lisi M, Forconi S, Parker JD: Nitroglycerin protects the endothelium from ischaemia and reperfusion: Human mechanistic insight. Br J Clin Pharmacol, 2007, 64, 145–150.
Griendling KK, FitzGerald GA: Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation, 2003, 108, 1912–1916.
Griendling KK, FitzGerald GA: Oxidative stress and cardiovascular injury: Part II: Animal and human studies. Circulation, 2003, 108, 2034–2040.
Hausenloy D, Wynne A, Duchen M, Yellon D: Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation, 2004, 109, 1714–1717.
Heistad DD: Oxidative stress and vascular disease: 200 Duff lecture. Arterioscler Thromb Vasc Biol, 2006, 26, 689–695.
Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T: Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation, 2001, 104, 2673–2678.
Hink U, Oelze M, Kolb P, Bachschmid M, Zou MH, Daiber A, Mollnau H et al.: Role for peroxynitrite in the inhibition of prostacyclin synthase in nitrate tolerance. J Am Coll Cardiol, 2003, 42, 1826–1834.
Hirai N, Kawano H, Yasue H, Shimomura H, Miyamoto S, Soejima H, Kajiwara I et al.: Attenuation of nitrate tolerance and oxidative stress by an angiotensin II receptor blocker in patients with coronary spastic angina. Circulation, 2003, 108, 1446–1450.
Jakschik B, Needleman P: Sulfhydryl reactivity of organic nitrates: Biochemical basis for inhibition of glyceraldehyde-P dehydrogenase and monoamine oxidase. Biochem Biophys Res Commun, 1973, 53, 539–544.
Jurt U, Gori T, Ravandi A, Babaei S, Zeman P, Parker JD: Differential effects of pentaerythritol tetranitrate and nitroglycerin on the development of tolerance and evidence of lipid peroxidation: A human in vivo study. J Am Coll Cardiol, 2001, 38, 854–859.
Klumpp G, Schildknecht S, Nastainczyk W, Ullrich V, Bachschmid M: Prostacyclin in the cardiovascular system: New aspects and open questions. Pharmacol Rep, 2005, 57, Suppl, 120–126.
Kurz S, Hink U, Nickenig G, Borthayre AB, Harrison DG, Munzel T: Evidence for a causal role of the reninangiotensin system in nitrate tolerance. Circulation, 1999, 99, 3181–3187.
Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG: Role of p47phox in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension, 2002, 40, 511–515.
Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG: Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest, 2003, 111, 1201–1209.
Lau D, Baldus S: Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther, 2006, 111, 16–26.
Lim SY, Davidson SM, Hausenloy DJ, Yellon DM: Preconditioning and postconditioning: The essential role of the mitochondrial permeability transition pore. Cardiovasc Res, 2007, 75, 530–535.
Longobardi G, Ferrara N, Leosco D, Abete P, Furgi G, Cacciatore F, Corbi G et al.: Angiotensin II-receptor antagonist losartan does not prevent nitroglycerin tolerance in patients with coronary artery disease. Cardiovasc Drugs Ther, 2004, 18, 363–370.
Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S et al.: Nox1 is involved in angiotensin II-mediated hypertension: A study in Nox1- deficient mice. Circulation, 2005, 112, 2677–2685.
Mihm MJ, Coyle CM, Jing L, Bauer JA: Vascular peroxynitrite formation during organic nitrate tolerance. J Pharmacol Exp Ther, 1999, 291, 194–198.
Milone SD, Azevedo ER, Forster C, Parker JD: The angiotensin II-receptor antagonist losartan does not prevent hemodynamic or vascular tolerance to nitroglycerin. J Cardiovasc Pharmacol, 1999, 34, 645–650.
Minuz P, Fava C, Lechi A: Lipid peroxidation, isoprostanes and vascular damage. Pharmacol Rep, 2006, 58, Suppl, 57–68.
Mollnau H, Wenzel P, Oelze M, Treiber N, Pautz A, Schulz E, Schuhmacher S et al.: Mitochondrial oxidative stress and nitrate tolerance–comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/− mice. BMC Cardiovasc Disord, 2006, 6, 44.
Mülsch A, Oelze M, Kloss S, Mollnau H, Topfer A, Smolenski A, Walter U et al.: Effects of in vivo nitroglycerin treatment on activity and expression of the guanylyl cyclase and cGMP-dependent protein kinase and their downstream target vasodilator-stimulated phosphoprotein in aorta. Circulation, 2001, 103, 2188–2194.
Münzel T, Bassenge E: Long-term angiotensin-converting enzyme inhibition with high-dose enalapril retards nitrate tolerance in large epicardial arteries and prevents rebound coronary vasoconstriction in vivo. Circulation, 1996, 93, 2052–2058.
Münzel T, Daiber A, Mülsch A: Explaining the phenomenon of nitrate tolerance. Circ Res, 2005, 97, 618–628.
Münzel T, Daiber A, Ullrich V, Mülsch A: Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol, 2005, 25, 1551–1557.
Münzel T, Giaid A, Kurz S, Stewart DJ, Harrison DG: Evidence for a role of endothelin 1 and protein kinase C in nitroglycerin tolerance. Proc Natl Acad Sci USA, 1995, 92, 5244–5248.
Münzel T, Harrison DG: Evidence for a role of oxygenderived free radicals and protein kinase c in nitrate tolerance. J Mol Med, 1997, 75, 891–900.
Münzel T, Heitzer T, Kurz S, Harrison DG, Luhman C, Pape L, Olschewski M, Just H: Dissociation of coronary vascular tolerance and neurohormonal adjustments during long-term nitroglycerin therapy in patients with stable coronary artery disease. J Am Coll Cardiol, 1996, 27, 297–303.
Münzel T, Kurz S, Rajagopalan S, Thoenes M, Berrington WR, Thompson JA, Freeman BA, Harrison DG: Hydralazine prevents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase. A new action for an old drug. J Clin Invest, 1996, 98, 1465–1470.
Münzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG: Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest, 1995, 95, 187–194.
Nakamura Y, Moss AJ, Brown MW, Kinoshita M, Kawai C: Long-term nitrate use may be deleterious in ischemic heart disease: A study using the databases from two large-scale postinfarction studies. Multicenter myocardial ischemia research group. Am Heart J, 1999, 138, 577–585.
Needleman P, Hunter FE, Jr.: Effects of organic nitrates on mitochondrial respiration and swelling: Possible correlations with the mechanism of pharmacologic action. Mol Pharmacol, 1966, 2, 134–143.
Needleman P, Johnson EM, Jr.: Mechanism of tolerance development to organic nitrates. J Pharmacol Exp Ther, 1973, 184, 709–715.
Oberle S, Abate A, Grosser N, Hemmerle A, Vreman HJ, Dennery PA, Schneider HT et al.: Endothelial protection by pentaerithrityl trinitrate: Bilirubin and carbon monoxide as possible mediators. Exp Biol Med (Maywood), 2003, 228, 529–534.
Oberle S, Schwartz P, Abate A, Schroder H: The antioxidant defense protein ferritin is a novel and specific target for pentaerithrityl tetranitrate in endothelial cells. Biochem Biophys Res Commun, 1999, 261, 28–34.
Palmer RM, Ferrige AG, Moncada S: Nitric oxide release accounts for the biological activity of endothelium- derived relaxing factor. Nature, 1987, 327, 524–526.
Radomski MW, Palmer RM, Moncada S: The anti-aggregating properties of vascular endothelium: Interactions between prostacyclin and nitric oxide. Br J Pharmacol, 1987, 92, 639–646.
Ren J: Acetaldehyde and alcoholic cardiomyopathy: Lessons from the ADH and ALDH2 transgenic models. Novartis Found Symp, 2007, 285, 69–76. discussion 76–69, 198–199.
Sage PR, de la Lande IS, Stafford I, Bennett CL, Phillipov G, Stubberfield J, Horowitz JD: Nitroglycerin tolerance in human vessels: Evidence for impaired nitroglycerin bioconversion. Circulation, 2000, 102, 2810–2815.
Schachinger V, Britten MB, Zeiher AM: Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation, 2000, 101, 1899–1906.
Schulz E, Tsilimingas N, Rinze R, Reiter B, Wendt M, Oelze M, Woelken- Weckmuller S et al.: Functional and biochemical analysis of endothelial (dys)function and NO/cGMP signaling in human blood vessels with and without nitroglycerin pretreatment. Circulation, 2002, 105, 1170–1175.
Sekiya M, Sato M, Funada J, Ohtani T, Akutsu H, Watanabe K: Effects of the long-term administration of nicorandil on vascular endothelial function and the progression of arteriosclerosis. J Cardiovasc Pharmacol, 2005, 46, 63–67.
Strassburger M, Bloch W, Sulyok S, Schuller J, Keist AF, Schmidt A, Wenk J et al.: Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo. Free Radic Biol Med, 2005, 38, 1458–1470.
Sydow K, Daiber A, Oelze M, Chen Z, August M, Wendt M, Ullrich V et al.: Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J Clin Invest, 2004, 113, 482–489.
Thomas GR, DiFabio JM, Gori T, Parker JD: Once daily therapy with isosorbide-5-mononitrate causes endothelial dysfunction in humans: Evidence of a free-radicalmediated mechanism. J Am Coll Cardiol, 2007, 49, 1289–1295.
Thum T, Fraccarollo D, Thum S, Schultheiss M, Daiber A, Wenzel P, Münzel T et al.: Differential effects of organic nitrates on endothelial progenitor cells are determined by oxidative stress. Arterioscler Thromb Vasc Biol, 2007, 27, 748–754.
Torzewski M, Ochsenhirt V, Kleschyov AL, Oelze M, Daiber A, Li H, Rossmann H et al.: Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol, 2007, 27, 850–857.
Towell J, Garthwaite T, Wang R: Erythrocyte aldehyde dehydrogenase and disulfiram-like side effects of hypoglycemics and antianginals. Alcohol Clin Exp Res, 1985, 9, 438–442.
Warnholtz A, Buse J, Wild P, Münzel T: Prognostic value of endothelial dysfunction (German). Kardiologie up2date, 2006, 2, 218–225.
Warnholtz A, Mollnau H, Heitzer T, Kontush A, Moller-Bertram T, Lavall D, Giaid A et al.: Adverse effects of nitroglycerin treatment on endothelial function, vascular nitrotyrosine levels and cGMP-dependent protein kinase activity in hyperlipidemic Watanabe rabbits. J Am Coll Cardiol, 2002, 40, 1356–1363.
Wennmalm A: Endothelial nitric oxide and cardiovascular disease. J Intern Med, 1994, 235, 317–327.
Wenzel P, Hink U, Oelze M, Schuppan S, Schaeuble K, Schildknecht S, Ho KK et al.: Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity. Implications for mitochondrial oxidative stress and nitrate tolerance. J Biol Chem, 2007, 282, 792–799.
Wenzel P, Hink U, Oelze M, Seeling A, Isse T, Bruns K, Steinhoff L et al.: Number of nitrate groups determines reactivity and potency of organic nitrates: A proof of concept study in ALDH-2–/–mice. Br J Pharmacol, 2007, 150, 526–533.
Wenzel P, Mollnau H, Oelze M, Schulz E, Wickramanayake JM, Muller J, Schuhmacher S et al.: First evidence for a crosstalk between mitochondrial and NADPH oxidase-derived reactive oxygen species in nitroglycerin- triggered vascular dysfunction. Antioxid Redox Signal, 2008, 10, 1435–1447.
Wenzel P, Muller J, Zurmeyer S, Schuhmacher S, Schulz E, Oelze M, Pautz A et al.: ALDH-2 deficiency increases cardiovascular oxidative stress–evidence for indirect antioxidative properties. Biochem Biophys Res Commun, 2008, 367, 137–143.
Wenzel P, Oelze M, Coldewey M, Hortmann M, Seeling A, Hink U, Mollnau H et al.: Heme oxygenase-1. Anovel key player in the development of tolerance in response to organic nitrates. Arterioscler Thromb Vasc Biol, 2007, 27, 1729–1735.
Wenzel P, Schuhmacher S, Kienhofer J, Muller J, Hortmann M, Oelze M, Schulz E et al.: MnSOD and ALDH-2 deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res, 2008, 80, 280–289.
Willerson JT, Golino P, Eidt J, Campbell WB, Buja LM: Specific platelet mediators and unstable coronary artery lesions. Experimental evidence and potential clinical implications. Circulation, 1989, 80, 198–205.
Xiong Y, Shie FS, Zhang J, Lee CP, Ho YS: The protective role of cellular glutathione peroxidase against trauma-induced mitochondrial dysfunction in the mouse brain. J Stroke Cerebrovasc Dis, 2004, 13, 129–137.
Zou MH, Ullrich V: Peroxynitrite formed by simultaneous generation of nitric oxide and superoxide selectively inhibits bovine aortic prostacyclin synthase. FEBS Lett, 1996, 382, 101–104.