Niobium doped TiO2 nanorod arrays as efficient electron transport materials in photovoltaic

Journal of Power Sources - Tập 450 - Trang 227715 - 2020
Peng Zhong1,2, Xinpeng Chen1, Bingqiang Niu1, Cong Li1, Yucheng Wang3, He Xi1,2, Yimin Lei1,2, Zhenni Wang1, Xiaohua Ma2,4
1School of Advanced Materials and Nanotechnology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an, 710126, Shaanxi, People's Republic of China
2Key Lab of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an, 710071, Shaanxi, People's Republic of China
3School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, 710071, Shaanxi, People's Republic of China
4School of Microelectronics, Xidian University, Xi'an, 710071, Shaanxi, People's Republic of China

Tài liệu tham khảo

Lewis, 2006, Proc. Natl. Acad. Sci. U.S.A., 103, 15729, 10.1073/pnas.0603395103 Shah, 1999, Science, 285, 692, 10.1126/science.285.5428.692 Yoshikawa, 2017, Nat. Energy, 2, 10.1038/nenergy.2017.32 Jeon, 2014, Nat. Mater., 13, 897, 10.1038/nmat4014 Zhou, 2014, Science, 345, 542, 10.1126/science.1254050 Liu, 2013, Nature, 501, 395, 10.1038/nature12509 Bi, 2016, Nano Energy, 23, 138, 10.1016/j.nanoen.2016.03.020 M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Joule. Bach, 1998, Nature, 395, 583, 10.1038/26936 Mathew, 2014, Nat. Chem., 6, 242, 10.1038/nchem.1861 Yella, 2011, Science, 334, 629, 10.1126/science.1209688 Pan, 2014, J. Am. Chem. Soc., 136, 9203, 10.1021/ja504310w Pan, 2013, ACS Nano, 7, 5215, 10.1021/nn400947e Noh, 2013, Nano Lett., 13, 1764, 10.1021/nl400349b Zhao, 2017, J. Am. Chem. Soc., 139, 7148, 10.1021/jacs.7b02677 Meng, 2018, Science, 361, 1094, 10.1126/science.aat2612 Gregg, 2003, J. Phys. Chem. B, 107, 4688, 10.1021/jp022507x Liu, 2019, Adv. Sci., 6 Sarkar, 2014, J. Phys. Chem. C, 118, 16688, 10.1021/jp412655p Crossland, 2013, Nature, 495, 215, 10.1038/nature11936 Pazoki, 2014, J. Phys. Chem. C, 118, 16472, 10.1021/jp4113574 O'Regan, 2012, Energy Environ. Sci., 5, 7203, 10.1039/c2ee21341a Wu, 2012, J. Mater. Chem., 22, 18057, 10.1039/c2jm33829g Du, 2019, J. Mater. Chem., 7, 2464, 10.1039/C8TA11483H Grancini, 2012, Adv. Funct. Mater., 22, 2160, 10.1002/adfm.201102360 Roose, 2016, Adv. Energy Mater., 6, 10.1002/aenm.201501868 Ahn, 2016, Nat. Commun., 7, 10.1038/ncomms13422 Zhong, 2011, J. Alloy. Comp., 509, 7808, 10.1016/j.jallcom.2011.05.028 Zhong, 2015, Nano Energy, 16, 99, 10.1016/j.nanoen.2015.06.007 Zhong, 2018, J. Solid State Electrochem., 22, 567, 10.1007/s10008-017-3786-x Wu, 2016, Adv. Energy Mater., 6 Ramos, 2015, J. Mater. Chem., 3, 13291, 10.1039/C5TA02238J Kim, 2013, Nano Lett., 13, 2412, 10.1021/nl400286w Jaramillo-Quintero, 2016, Nanoscale, 8, 6271, 10.1039/C5NR06692A Wu, 2014, Energy Environ. Sci., 7, 644, 10.1039/C3EE42167H Liao, 2012, Energy Environ. Sci., 5, 5750, 10.1039/C1EE02766B Jiang, 2014, Chem. Commun., 50, 14720, 10.1039/C4CC07367C Gu, 2016, J. Solid State Electrochem., 20, 3337, 10.1007/s10008-016-3301-9 Zhong, 2011, Appl. Surf. Sci., 257, 9872, 10.1016/j.apsusc.2011.06.060 Ye, 2013, Adv. Mater., 25, 3039, 10.1002/adma.201205274 Sheng, 2019, Adv. Mater., 31, 10.1002/adma.201805132 Vomiero, 2012, Nano Energy, 1, 372, 10.1016/j.nanoen.2012.02.012 Hou, 2017, Chem. Eng. J., 330, 947, 10.1016/j.cej.2017.08.045 Liu, 2016, Electrochim. Acta, 195, 143, 10.1016/j.electacta.2016.02.147 Wu, 2016, Sol. Energy, 135, 22, 10.1016/j.solener.2016.05.021 Lü, 2010, Adv. Funct. Mater., 20, 509, 10.1002/adfm.200901292 Liang, 2017, J. Power Sources, 372, 235, 10.1016/j.jpowsour.2017.10.079 Chen, 2015, Science, 350, 944, 10.1126/science.aad1015 Wang, 2015, Appl. Phys. Lett., 106 Furubayashi, 2005, Appl. Phys. Lett., 86, 10.1063/1.1949728 Bhachu, 2014, Adv. Funct. Mater., 24, 5075, 10.1002/adfm.201400338 Lee, 2009, J. Phys. Chem. C, 113, 6878, 10.1021/jp9002017 Sahasrabudhe, 2016, Chem. Mater., 28, 3630, 10.1021/acs.chemmater.6b02031 Numata, 2018, J. Mater. Chem., 6, 9583, 10.1039/C8TA02540A Yue, 2017, J. Mater. Chem., 5, 1978, 10.1039/C6TA06840E Yang, 2014, J. Power Sources, 245, 301, 10.1016/j.jpowsour.2013.06.016 Chen, 2016, J. Mater. Chem., 4, 5647, 10.1039/C6TA00989A Cui, 2017, Nanoscale, 9, 18897, 10.1039/C7NR05687G Kang, 2013, J. Mater. Chem., 1, 5766, 10.1039/c3ta10689f Kavan, 1996, J. Am. Chem. Soc., 118, 6716, 10.1021/ja954172l Chauvet, 1995, Solid State Commun., 93, 667, 10.1016/0038-1098(94)00845-0 Cheng, 2007, Chemosphere, 68, 1976, 10.1016/j.chemosphere.2007.02.010 Cheng, 2008, J. Phys. Chem. C, 112, 8725, 10.1021/jp7097476 Sarritzu, 2017, Sci. Rep., 7, 10.1038/srep44629 J. Chen, N.-G. Park, Advanced Materials, 0 1803019. Correa Baena, 2015, Energy Environ. Sci., 8, 2928, 10.1039/C5EE02608C Jiang, 2017, Nat. Energy, 2, 1, 10.1038/nenergy.2016.177