Niobian and zincian ilmenites in syenites from Cape Ashizuri, Southwest Japan

K. Nakashima1, T. Imaoka2
1Department of Earth and Environmental Sciences, Faculty of Science, Yamagata University, Yamagata, Japan
2Institute of Earth Sciences, Faculty of Science, Yamaguchi University, Yamaguchi, Japan

Tóm tắt

Ilmenite in alkali feldspar quartz syenite from Cape Ashizuri contains up to 4.4 wt.% Nb2O5. Niobium substitutes for Ti in the octahedral site of the ilmenite structure. Substitution of Nb for Ti may involve a coupled exchange to maintain charge balance, and an exchange of 2Nb + 2Fe3+ = 3Ti + 2Fe2+ is advocated. An Fe-Ti oxide geothermometer obtained from mineral pairs of granular and lamellar intergrowths indicates a subsolidus re-equilibration temperature of 510–640 °C andfO2 between the FMQ and MW-buffers, implying that it is very undersaturated with respect to water. On the other hand, Zn-ilmenite, containing up to 5.4 wt.% ZnO, occurs in miarolitic cavities in peralkaline rhyolite which cuts the quartz syenite. The Zn-ilmenite is one of the last crystalline phases of the Ashizuri magmatic activities under volatile-rich conditions. Nb-oxides, such as fergusonite, samarskite, columbite and a pyrochlore-like mineral, are Ta- and Mn-poor, which corresponds to those of less-fractionated rocks of anorogenic alkali granite and pegmatitic granite in the continental situation. Ta- and Mn-poor Nb-oxides in F- and Li-rich alkaline felsic magmas such as the Ashizuri syenites are unusual; this may be related to a rapid emplacement and cooling of mantle-derived small-volume magma in the island are situation.

Tài liệu tham khảo