Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system
Tóm tắt
Từ khóa
Tài liệu tham khảo
Changeux, J. P. & Edelstein, S. J. Allosteric mechanisms of signal transduction. Science 308, 1424–1428 (2005).
Corringer, P. J., Le Novere, N. & Changeux, J. P. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431–458 (2000).
Wilson, G. & Karlin, A. Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc. Natl Acad. Sci. USA 98, 1241–1248 (2001).
Sine, S. M. & Engel, A. G. Recent advances in Cys-loop receptor structure and function. Nature 440, 448–455 (2006).
Changeux, J. P. & Edelstein, S. J. Nicotinic Acetylcholine Receptors: From Molecular Biology To Cognition (Odile Jacob, New York, 2005). A general review book on nicotinic receptors and their function.
Gotti, C., Riganti, L., Vailati, S. & Clementi, F. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr. Pharm. Des. 12, 407–428 (2006).
Dani, J. A. & Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699–729 (2007).
Sallette, J. et al. Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron 46, 595–607 (2005).
Arneric, S. P., Holladay, M. & Williams, M. Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. Biochem. Pharmacol. 74, 1092–1101 (2007). An historical account and outlook on future research on nicotinic compounds in the pharmaceutical industry.
Levin, E. D. & Rezvani, A. H. Nicotinic interactions with antipsychotic drugs, models of schizophrenia and impacts on cognitive function. Biochem. Pharmacol. 74, 1182–1191 (2007).
Romanelli, M. N. et al. Central nicotinic receptors: structure, function, ligands, and therapeutic potential. ChemMedChem 2, 746–767 (2007).
Changeux, J. P. & Taly, A. Nicotinic receptors, allosteric proteins and medicine. Trends Mol. Med. 14, 93–102 (2008).
Gotti, C. et al. Heterogeneity and complexity of native brain nicotinic receptors. Biochem. Pharmacol. 74, 1102–1111 (2007).
Grady, S. R. et al. Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the α3β4* and α3β3β4* subtypes mediate acetylcholine release. J. Neurosci. 29, 2272–2282 (2009).
Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001). This paper describes the first-characterized atomic structure of an invertebrate homologue of the extracellular domain and ACh-binding sites of the nAChR.
Celie, P. H. et al. Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J. Biol. Chem. 280, 26457–26466 (2005).
Hansen, S. B. et al. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J. 24, 3635–3646 (2005).
Corringer, P. J. et al. Identification of a new component of the agonist binding site of the nicotinic α7 homooligomeric receptor. J. Biol. Chem. 270, 11749–11752 (1995).
Grutter, T. & Changeux, J. P. Nicotinic receptors in wonderland. Trends Biochem. Sci. 26, 459–463 (2001).
Mourot, A., Grutter, T., Goeldner, M. & Kotzyba-Hibert, F. Dynamic structural investigations on the torpedo nicotinic acetylcholine receptor by time-resolved photoaffinity labeling. Chembiochem 7, 570–583 (2006).
Kotzyba-Hibert, F., Mourot, A., Grutter, T. & Goeldner, M. in XIth Cholinergic Mechanisms Symposium (eds. Fisher, M. D. L. A. & Soreq, H.) 607 (Taylor & Francis, London, 2004).
Kalamida, D. et al. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J. 274, 3799–3845 (2007).
Bourne, Y., Talley, T. T., Hansen, S. B., Taylor, P. & Marchot, P. Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors. EMBO J. 24, 1512–1522 (2005).
Brejc, K., van Dijk, W. J., Smit, A. B. & Sixma, T. K. The 2.7 Å structure of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Novartis Found. Symp. 245, 22–29; discussion 29–32, 165–8 (2002).
Celie, P. H. et al. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41, 907–914 (2004).
Celie, P. H. et al. Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an α-conotoxin PnIA variant. Nature Struct. Mol. Biol. 12, 582–588 (2005).
Hansen, S. B. et al. Structural characterization of agonist and antagonist-bound acetylcholine-binding protein from Aplysia californica. J. Mol. Neurosci. 30, 101–102 (2006). This study describes the structure of the ligand-binding domain of AChBP bound to several nicotinic agonists and antagonists.
Hansen, S. B. & Taylor, P. Galanthamine and non-competitive inhibitor binding to ACh-binding protein: evidence for a binding site on non-α-subunit interfaces of heteromeric neuronal nicotinic receptors. J. Mol. Biol. 369, 895–901 (2007).
Ihara, M. et al. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invert. Neurosci. 8, 71–81 (2008).
Dennis, M. et al. Amino acids of the Torpedo marmorata acetylcholine receptor alpha subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry 27, 2346–2357 (1988).
Galzi, J. L. et al. Identification of a novel amino acid α-tyrosine 93 within the cholinergic ligands-binding sites of the acetylcholine receptor by photoaffinity labeling. Additional evidence for a three-loop model of the cholinergic ligands-binding sites. J. Biol. Chem. 265, 10430–10437 (1990).
Zhong, W. et al. From ab initio quantum mechanics to molecular neurobiology: a cation-π binding site in the nicotinic receptor. Proc. Natl Acad. Sci. USA 95, 12088–12093 (1998).
Xiu, X., Puskar, N. L., Shanata, J. A., Lester, H. A. & Dougherty, D. A. Nicotine binding to brain receptors requires a strong cation-π interaction. Nature 458, 534–537 (2009).
Williamson, P. T., Verhoeven, A., Miller, K. W., Meier, B. H. & Watts, A. The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 104, 18031–18036 (2007).
Ulens, C. et al. Structural determinants of selective α-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc. Natl Acad. Sci. USA 103, 3615–3620 (2006).
Yuan, H. & Petukhov, P. A. Computational evidence for the ligand selectivity to the α4β2 and α3β4 nicotinic acetylcholine receptors. Bioorg. Med. Chem. 14, 7936–7942 (2006).
Corringer, P. J. et al. Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J. Neurosci. 18, 648–657 (1998).
Horenstein, N. A., McCormack, T. J., Stokes, C., Ren, K. & Papke, R. L. Reversal of agonist selectivity by mutations of conserved amino acids in the binding site of nicotinic acetylcholine receptors. J. Biol. Chem. 282, 5899–5909 (2007).
Dutertre, S. & Lewis, R. J. Toxin insights into nicotinic acetylcholine receptors. Biochem. Pharmacol. 72, 661–670 (2006).
Grutter, T. et al. A chimera encoding the fusion of an acetylcholine-binding protein to an ion channel is stabilized in a state close to the desensitized form of ligand-gated ion channels. C. R. Biol. 328, 223–234 (2005).
Giraudat, J., Dennis, M., Heidmann, T., Chang, J. Y. & Changeux, J. P. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the δ subunit is labeled by [3H]chlorpromazine. Proc. Natl Acad. Sci. USA 83, 2719–2723 (1986).
Blanton, M. P., McCardy, E. A., Huggins, A. & Parikh, D. Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16. Biochemistry 37, 14545–14555 (1998).
Faghih, R., Gopalakrishnan, M. & Briggs, C. A. Allosteric modulators of the α7 nicotinic acetylcholine receptor. J. Med. Chem. 51, 701–712 (2008).
Bertrand, D. & Gopalakrishnan, M. Allosteric modulation of nicotinic acetylcholine receptors. Biochem. Pharmacol. 74, 1155–1163 (2007).
Arias, H. R., Bhumireddy, P. & Bouzat, C. Molecular mechanisms and binding site locations for noncompetitive antagonists of nicotinic acetylcholine receptors. Int. J. Biochem. Cell Biol. 38, 1254–1276 (2006).
Hsiao, B. et al. Determinants of zinc potentiation on the α4 subunit of neuronal nicotinic receptors. Mol. Pharmacol. 69, 27–36 (2006).
Moroni, M. et al. Non-agonist-binding subunit interfaces confer distinct functional signatures to the alternate stoichiometries of the α4β2 nicotinic receptor: an α4–α4 interface is required for Zn2+ potentiation. J. Neurosci. 28, 6884–6894 (2008).
Sigel, E. Mapping of the benzodiazepine recognition site on GABAA receptors. Curr. Top. Med. Chem. 2, 833–839 (2002).
Galzi, J. L., Bertrand, S., Corringer, P. J., Changeux, J. P. & Bertrand, D. Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. EMBO J. 15, 5824–5832 (1996).
Le Novere, N., Grutter, T. & Changeux, J. P. Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Proc. Natl Acad. Sci. USA 99, 3210–3215 (2002).
McLaughlin, J. T., Fu, J., Sproul, A. D. & Rosenberg, R. L. Role of the outer β-sheet in divalent cation modulation of α7 nicotinic receptors. Mol. Pharmacol. 70, 16–22 (2006).
Bocquet, N. et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114 (2009). This paper, together with reference 80, provided the first-characterized atomic structure of a bacterial channel in an apparently open conformation, constituting atomic resolution of a possible gating mechanism.
Popot, J. L., Demel, R. A., Sobel, A., Van Deenen, L. L. & Changeux, J. P. Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids. Eur. J. Biochem. 85, 27–42 (1978).
Barrantes, F. J. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res. Brain Res. Rev. 47, 71–95 (2004).
Dacosta, C. J. & Baenziger, J. E. A lipid-dependent uncoupled conformation of the acetylcholine receptor. J. Biol. Chem. 284, 17819–17825 (2009).
Hamouda, A. K., Chiara, D. C., Sauls, D., Cohen, J. B. & Blanton, M. P. Cholesterol interacts with transmembrane α-helices M1, M3, and M4 of the Torpedo nicotinic acetylcholine receptor: photolabeling studies using [3H]azicholesterol. Biochemistry 45, 976–986 (2006).
Blanton, M. P., Xie, Y., Dangott, L. J. & Cohen, J. B. The steroid promegestone is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor that interacts with the lipid–protein interface. Mol. Pharmacol. 55, 269–278 (1999).
Nievas, G. A., Barrantes, F. J. & Antollini, S. S. Conformation-sensitive steroid and fatty acid sites in the transmembrane domain of the nicotinic acetylcholine receptor. Biochemistry 46, 3503–3512 (2007).
Hosie, A. M., Buckingham, S. D., Hamon, A. & Sattelle, D. B. Replacement of asparagine with arginine at the extracellular end of the second transmembrane (M2) region of insect GABA receptors increases sensitivity to penicillin G. Invert. Neurosci. 6, 75–79 (2006).
Nirthanan, S., Garcia, G. III, Chiara, D. C., Husain, S. S. & Cohen, J. B. Identification of binding sites in the nicotinic acetylcholine receptor for TDBzl-etomidate, a photoreactive positive allosteric effector. J. Biol. Chem. 283, 22051–22062 (2008).
Chiara, D. C., Dangott, L. J., Eckenhoff, R. G. & Cohen, J. B. Identification of nicotinic acetylcholine receptor amino acids photolabeled by the volatile anesthetic halotane. Biochemistry 42, 13457–13467 (2003).
Young, G. T., Zwart, R., Walker, A. S., Sher, E. & Millar, N. S. Potentiation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc. Natl Acad. Sci. USA 105, 14686–14691 (2008).
Bertrand, D. et al. Positive allosteric modulation of the α7 nicotinic acetylcholine receptor: ligand interactions with distinct binding sites and evidence for a prominent role of the M2–M3 segment. Mol. Pharmacol. 74, 1407–1416 (2008). This study and reference 63 report the first identification of the binding site for allosteric modulators in the transmembrane domain of nAChRs.
Li, G. D. et al. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J. Neurosci. 26, 11599–11605 (2006).
Hales, T. G. et al. Common determinants of single channel conductance within the large cytoplasmic loop of 5-hydroxytryptamine type 3 and α4β2 nicotinic acetylcholine receptors. J. Biol. Chem. 281, 8062–8071 (2006).
Swope, S. L., Qu, Z. & Huganir, R. L. Phosphorylation of the nicotinic acetylcholine receptor by protein tyrosine kinases. Ann. NY Acad. Sci. 757, 197–214 (1995).
Lee, Y. et al. Rapsyn carboxyl terminal domains mediate muscle specific kinase-induced phosphorylation of the muscle acetylcholine receptor. Neuroscience 153, 997–1007 (2008).
Lin, L. et al. The calcium sensor protein visinin-like protein-1 modulates the surface expression and agonist sensitivity of the α4β2 nicotinic acetylcholine receptor. J. Biol. Chem. 277, 41872–41878 (2002).
Kabbani, N., Woll, M. P., Levenson, R., Lindstrom, J. M. & Changeux, J. P. Intracellular complexes of the β2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics. Proc. Natl Acad. Sci. USA 104, 20570–20575 (2007).
Unwin, N., Miyazawa, A., Li, J. & Fujiyoshi, Y. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the α subunits. J. Mol. Biol. 319, 1165–1176 (2002).
Krebs, W. G. et al. Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. Proteins 48, 682–695 (2002).
Bahar, I. & Rader, A. J. Coarse-grained normal mode analysis in structural biology. Curr. Opin. Struct. Biol. 15, 586–592 (2005).
Taly, A. et al. Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. Biophys. J. 88, 3954–3965 (2005). The first proposal of a gating mechanism of the nAChR channel by a quaternary twist mechanism.
Taly, A. et al. Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors. Proc. Natl Acad. Sci. USA 103, 16965–16970 (2006).
Taly, A. Opened by a twist: a gating mechanism for the nicotinic acetylcholine receptor. Eur. Biophys. J. 36, 911–918 (2007).
Konstantakaki, M., Changeux, J. & Taly, A. Docking of long chain α-cobratoxin suggests a basal state conformation of the nicotinic receptor. Biochem. Biophys. Res. Commun. 359, 413–418 (2007).
Samson, A. O. & Levitt, M. Inhibition mechanism of the acetylcholine receptor by α-neurotoxins as revealed by normal-mode dynamics. Biochemistry 47, 4065–4070 (2008).
Yi, M., Tjong, H. & Zhou, H. X. Spontaneous conformational change and toxin binding in α7 acetylcholine receptor: insight into channel activation and inhibition. Proc. Natl Acad. Sci. USA 105, 8280–8285 (2008).
Hilf, R. J. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009).
Hilf, R. J. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008). The first crystallographic structure to be resolved of a bacterial receptor channel that is homologous to nicotinic receptors.
Bocquet, N. et al. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445, 116–119 (2007). The first demonstration of a functional bacterial receptor channel that is homologous to nicotinic receptors.
Fruchart-Gaillard, C. et al. Experimentally based model of a complex between a snake toxin and the α7 nicotinic receptor. Proc. Natl Acad. Sci. USA 99, 3216–3221 (2002).
Lyukmanova, E. N. et al. Bacterial expression, NMR, and electrophysiology analysis of chimeric short/long-chain α-neurotoxins acting on neuronal nicotinic receptors. J. Biol. Chem. 282, 24784–24791 (2007).
Gay, E. A., Bienstock, R. J., Lamb, P. W. & Yakel, J. L. Structural determinates for apolipoprotein E-derived peptide interaction with the α7 nicotinic acetylcholine receptor. Mol. Pharmacol. 72, 838–849 (2007).
Mordvitsev, D. Y. et al. Computer modeling of binding of diverse weak toxins to nicotinic acetylcholine receptors. Comput. Biol. Chem. 31, 72–81 (2007).
Huang, X. et al. Modeling subtype-selective agonists binding with α4β2 and α7 nicotinic acetylcholine receptors: effects of local binding and long-range electrostatic interactions. J. Med. Chem. 49, 7661–7674 (2006).
Mordvintsev, D. Y. et al. A model for short α-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain α-neurotoxins and α-conotoxins. Comput. Biol. Chem. 29, 398–411 (2005).
Dutertre, S. & Lewis, R. J. Computational approaches to understand α-conotoxin interactions at neuronal nicotinic receptors. Eur. J. Biochem. 271, 2327–2334 (2004).
Dutertre, S., Nicke, A., Tyndall, J. D. & Lewis, R. J. Determination of α-conotoxin binding modes on neuronal nicotinic acetylcholine receptors. J. Mol. Recognit. 17, 339–347 (2004).
Jozwiak, K., Ravichandran, S., Collins, J. R. & Wainer, I. W. Interaction of noncompetitive inhibitors with an immobilized α3β4 nicotinic acetylcholine receptor investigated by affinity chromatography, quantitative-structure activity relationship analysis, and molecular docking. J. Med. Chem. 47, 4008–4021 (2004).
Dutertre, S., Nicke, A. & Lewis, R. J. β2 subunit contribution to 4/7 α-conotoxin binding to the nicotinic acetylcholine receptor. J. Biol. Chem. 280, 30460–30468 (2005).
Ellison, M. et al. α-conotoxins ImI and ImII target distinct regions of the human α7 nicotinic acetylcholine receptor and distinguish human nicotinic receptor subtypes. Biochemistry 43, 16019–16026 (2004).
Jin, A. H. et al. Molecular engineering of conotoxins: the importance of loop size to α-conotoxin structure and function. J. Med. Chem. 51, 5575–5584 (2008).
Konstantakaki, M., Tzartos, S. J., Poulas, K. & Eliopoulos, E. Model of the extracellular domain of the human α7 nAChR based on the crystal structure of the mouse α1 nAChR extracellular domain. J. Mol. Graph. Model 26, 1333–1337 (2008).
Rocher, A. & Marchand-Geneste, N. Homology modelling of the Apis mellifera nicotinic acetylcholine receptor (nAChR) and docking of imidacloprid and fipronil insecticides and their metabolites. SAR QSAR Environ. Res. 19, 245–261 (2008).
Huang, X., Zheng, F., Crooks, P. A., Dwoskin, L. P. & Zhan, C. G. Modeling multiple species of nicotine and deschloroepibatidine interacting with α4β2 nicotinic acetylcholine receptor: from microscopic binding to phenomenological binding affinity. J. Am. Chem. Soc. 127, 14401–14414 (2005).
Artali, R., Bombieri, G. & Meneghetti, F. Docking of 6-chloropyridazin-3-yl derivatives active on nicotinic acetylcholine receptors into molluscan acetylcholine binding protein (AChBP). Farmaco 60, 313–320 (2005).
Bisson, W. H., Scapozza, L., Westera, G., Mu, L. & Schubiger, P. A. Ligand selectivity for the acetylcholine binding site of the rat α4β2 and α3β4 nicotinic subtypes investigated by molecular docking. J. Med. Chem. 48, 5123–5130 (2005).
Costa, V., Nistri, A., Cavalli, A. & Carloni, P. A structural model of agonist binding to the α3β4 neuronal nicotinic receptor. Br. J. Pharmacol. 140, 921–931 (2003).
Han, Z. Y. et al. Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur. J. Neurosci. 12, 3664–3674 (2000).
Han, Z. Y. et al. Localization of [3H]nicotine, [3H]cytisine, [3H]epibatidine, and [125I]α-bungarotoxin binding sites in the brain of Macaca mulatta. J. Comp. Neurol. 461, 49–60 (2003). An extensive analysis of the distribution of the various nicotinic binding sites in a primate brain.
Nelson, M. E., Kuryatov, A., Choi, C. H., Zhou, Y. & Lindstrom, J. Alternate stoichiometries of α4β2 nicotinic acetylcholine receptors. Mol. Pharmacol. 63, 332–341 (2003).
Buisson, B. & Bertrand, D. Chronic exposure to nicotine upregulates the human α4β2 nicotinic acetylcholine receptor function. J. Neurosci. 21, 1819–1829 (2001).
Champtiaux, N. et al. Distribution and pharmacology of α6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J. Neurosci. 22, 1208–1217 (2002).
Grady, S. R. et al. The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum. Biochem. Pharmacol. 74, 1235–1246 (2007).
Salas, R., Sturm, R., Boulter, J. & De Biasi, M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 29, 3014–3018 (2009). A clear demonstration of the contribution of structural nAChR subunits to nicotine withdrawal symptoms.
Taylor, P. et al. Structure-guided drug design: conferring selectivity among neuronal nicotinic receptor and acetylcholine-binding protein subtypes. Biochem. Pharmacol. 74, 1164–1171 (2007).
Huang, X., Zheng, F., Stokes, C., Papke, R. L. & Zhan, C. G. Modeling binding modes of α7 nicotinic acetylcholine receptor with ligands: the roles of Gln117 and other residues of the receptor in agonist binding. J. Med. Chem. 51, 6293–6302 (2008).
Grosman, C. & Auerbach, A. Kinetic, mechanistic, and structural aspects of unliganded gating of acetylcholine receptor channels: a single-channel study of second transmembrane segment 12′ mutants. J. Gen. Physiol. 115, 621–635 (2000). An extensive single-channel analysis of the nAChR gating mechanism, using mutagenesis studies.
Lange, O. F. et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320, 1471–1475 (2008).
Tobi, D. & Bahar, I. Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl Acad. Sci. USA 102, 18908–18913 (2005).
Engel, A. G., Ohno, K. & Sine, S. M. Congenital myasthenic syndromes: a diverse array of molecular targets. J. Neurocytol. 32, 1017–1037 (2003).
Cheng, X., Wang, H., Grant, B., Sine, S. M. & McCammon, J. A. Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. PLoS Comput. Biol. 2, e134 (2006).
Haddadian, E. J., Cheng, M. H., Coalson, R. D., Xu, Y. & Tang, P. In silico models for the human α4β2 nicotinic acetylcholine receptor. J. Phys. Chem. B 112, 13981–13990 (2008).
Rubin, M. M. & Changeux, J. P. On the nature of allosteric transitions: implications of non-exclusive ligand binding. J. Mol. Biol. 21, 265–274 (1966).
Marshall, C. G., Ogden, D. C. & Colquhoun, D. The actions of suxamethonium (succinyldicholine) as an agonist and channel blocker at the nicotinic receptor of frog muscle. J. Physiol. 428, 155–174 (1990).
Lape, R., Colquhoun, D. & Sivilotti, L. G. On the nature of partial agonism in the nicotinic receptor superfamily. Nature 454, 722–727 (2008).
Mukhtasimova, N., Lee, W. Y., Wang, H. L. & Sine, S. M. Detection and trapping of intermediate states priming nicotinic receptor channel opening. Nature 459, 451–454 (2009).
Buccafusco, J. J., Beach, J. W. & Terry, A. V. Jr. Desensitization of nicotinic acetylcholine receptors as a strategy for drug development. J. Pharmacol. Exp. Ther. 328, 364–370 (2009).
Schuller, H. M. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nature Rev. Cancer 9, 195–205 (2009).
Lefkowitz, R. J., Rajagopal, K. & Whalen, E. J. New roles for β-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol. Cell 24, 643–652 (2006).
Kihara, T. et al. α7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block Aβ-amyloid-induced neurotoxicity. J. Biol. Chem. 276, 13541–13546 (2001).
Buckingham, S. D., Jones, A. K., Brown, L. A. & Sattelle, D. B. Nicotinic acetylcholine receptor signalling: roles in Alzheimer's disease and amyloid neuroprotection. Pharmacol. Rev. 61, 39–61 (2009). A detailed analysis of nicotinic neuroprotection against amyloid-β toxicity.
Miwa, J. M. et al. The prototoxin lynx1 acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo. Neuron 51, 587–600 (2006).
Kasa, P., Rakonczay, Z. & Gulya, K. The cholinergic system in Alzheimer's disease. Prog. Neurobiol. 52, 511–535 (1997).
Court, J. et al. Nicotinic receptor abnormalities in Alzheimer's disease. Biol. Psychiatry 49, 175–184 (2001).
Flynn, D. D. & Mash, D. C. Characterization of L-[3H]nicotine binding in human cerebral cortex: comparison between Alzheimer's disease and the normal. J. Neurochem. 47, 1948–1954 (1986).
Whitehouse, P. J. et al. Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Res. 371, 146–151 (1986).
Aubert, I. et al. Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer's and Parkinson's diseases. J. Neurochem. 58, 529–541 (1992).
Bourin, M., Ripoll, N. & Dailly, E. Nicotinic receptors and Alzheimer's disease. Curr. Med. Res. Opin. 19, 169–177 (2003).
Nordberg, A. Neuroprotection in Alzheimer's disease — new strategies for treatment. Neurotox. Res. 2, 157–165 (2000).
Nordberg, A. et al. Imaging of nicotinic and muscarinic receptors in Alzheimer's disease: effect of tacrine treatment. Dement. Geriatr. Cogn. Disord. 8, 78–84 (1997).
Whitehouse, P. J. & Kalaria, R. N. Nicotinic receptors and neurodegenerative dementing diseases: basic research and clinical implications. Alzheimer Dis. Assoc. Disord. 9, S3–S5 (1995).
Guan, Z. Z., Zhang, X., Ravid, R. & Nordberg, A. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease. J. Neurochem. 74, 237–243 (2000).
Burghaus, L. et al. Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res. Mol. Brain Res. 76, 385–388 (2000).
Newhouse, P. A. et al. Intravenous nicotine in Alzheimer's disease: a pilot study. Psychopharmacology (Berl.) 95, 171–175 (1988).
Newhouse, P. A., Potter, A., Corwin, J. & Lenox, R. Age-related effects of the nicotinic antagonist mecamylamine on cognition and behavior. Neuropsychopharmacology 10, 93–107 (1994).
Newhouse, P. A., Potter, A., Corwin, J. & Lenox, R. Acute nicotinic blockade produces cognitive impairment in normal humans. Psychopharmacology (Berl.) 108, 480–484 (1992).
Sahakian, B. J. et al. A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson's disease. Brain 111, 695–718 (1988).
Sunderland, T., Tariot, P. N. & Newhouse, P. A. Differential responsivity of mood, behavior, and cognition to cholinergic agents in elderly neuropsychiatric populations. Brain Res. 472, 371–389 (1988).
Rusted, J. M., Newhouse, P. A. & Levin, E. D. Nicotinic treatment for degenerative neuropsychiatric disorders such as Alzheimer's disease and Parkinson's disease. Behav. Brain Res. 113, 121–129 (2000).
Picciotto, M. R. & Zoli, M. Nicotinic receptors in aging and dementia. J. Neurobiol. 53, 641–655 (2002).
Wehner, J. M. et al. Role of neuronal nicotinic receptors in the effects of nicotine and ethanol on contextual fear conditioning. Neuroscience 129, 11–24 (2004).
Keller, J. J., Keller, A. B., Bowers, B. J. & Wehner, J. M. Performance of α7 nicotinic receptor null mutants is impaired in appetitive learning measured in a signaled nose poke task. Behav. Brain Res. 162, 143–152 (2005).
Curzon, P. et al. Antisense knockdown of the rat α7 nicotinic acetylcholine receptor produces spatial memory impairment. Neurosci. Lett. 410, 15–19 (2006).
Fernandes, C., Hoyle, E., Dempster, E., Schalkwyk, L. C. & Collier, D. A. Performance deficit of α7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory. Genes Brain Behav. 5, 433–440 (2006).
Young, J. W. et al. Impaired attention is central to the cognitive deficits observed in α7 deficient mice. Eur. Neuropsychopharmacol. 17, 145–155 (2007).
Rezvani, A. H. et al. Effect of R3487/MEM3454, a novel nicotinic α7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 269–275 (2009).
Kitagawa, H. et al. Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology 28, 542–551 (2003).
Li, X. D. & Buccafusco, J. J. Effect of β-amyloid peptide 1–42 on the cytoprotective action mediated by α7 nicotinic acetylcholine receptors in growth factor-deprived differentiated PC-12 cells. J. Pharmacol. Exp. Ther. 307, 670–675 (2003).
Meyer, E. M. et al. Neuroprotective and memory-related actions of novel α7 nicotinic agents with different mixed agonist/antagonist properties. J. Pharmacol. Exp. Ther. 284, 1026–1032 (1998).
Quik, M. & Kulak, J. M. Nicotine and nicotinic receptors; relevance to Parkinson's disease. Neurotoxicology 23, 581–594 (2002).
Kihara, T. et al. Nicotinic receptor stimulation protects neurons against β-amyloid toxicity. Ann. Neurol. 42, 159–163 (1997).
Martin, S. E., de Fiebre, N. E. & de Fiebre, C. M. The α7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against β-amyloid1-42 toxicity in primary neuron-enriched cultures. Brain Res. 1022, 254–256 (2004).
Wang, H. Y., Lee, D. H., Davis, C. B. & Shank, R. P. Amyloid peptide Aβ(1–42) binds selectively and with picomolar affinity to α7 nicotinic acetylcholine receptors. J. Neurochem. 75, 1155–1161 (2000).
Dineley, K. T. et al. β-amyloid activates the mitogen-activated protein kinase cascade via hippocampal α7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer's disease. J. Neurosci. 21, 4125–4133 (2001).
Pettit, D. L., Shao, Z. & Yakel, J. L. β-amyloid(1–42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J. Neurosci. 21, RC120 (2001).
Spencer, J. P. et al. Transgenic mice over-expressing human β-amyloid have functional nicotinic α7 receptors. Neuroscience 137, 795–805 (2006).
Small, D. H. et al. The β-amyloid protein of Alzheimer's disease binds to membrane lipids but does not bind to the α7 nicotinic acetylcholine receptor. J. Neurochem. 101, 1527–1538 (2007).
Lamb, P. W., Melton, M. A. & Yakel, J. L. Inhibition of neuronal nicotinic acetylcholine receptor channels expressed in Xenopus oocytes by β-amyloid1–42 peptide. J. Mol. Neurosci. 27, 13–21 (2005).
D'Andrea, M. R. & Nagele, R. G. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in Alzheimer's disease pyramidal neurons. Curr. Pharm. Des. 12, 677–684 (2006).
Hogg, R. C. & Bertrand, D. Partial agonists as therapeutic agents at neuronal nicotinic acetylcholine receptors. Biochem. Pharmacol. 73, 459–468 (2007).
Lipiello, P. M. et al. Nicotinic receptors as targets for therapeutic discovery. Expert Opin. Drug Discov. 2, 1185–1203 (2007).
Curzon, P., Brioni, J. D. & Decker, M. W. Effect of intraventricular injections of dihydro-β-erythroidine (DHβE) on spatial memory in the rat. Brain Res. 714, 185–191 (1996).
Cordero-Erausquin, M., Marubio, L. M., Klink, R. & Changeux, J. P. Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol. Sci. 21, 211–217 (2000).
Blondel, A., Sanger, D. J. & Moser, P. C. Characterisation of the effects of nicotine in the five-choice serial reaction time task in rats: antagonist studies. Psychopharmacology (Berl.) 149, 293–305 (2000).
Granon, S., Faure, P. & Changeux, J. P. Executive and social behaviors under nicotinic receptor regulation. Proc. Natl Acad. Sci. USA 100, 9596–9601 (2003).
Hahn, B., Shoaib, M. & Stolerman, I. P. Involvement of the prefrontal cortex but not the dorsal hippocampus in the attention-enhancing effects of nicotine in rats. Psychopharmacology (Berl.) 168, 271–279 (2003).
Potter, A. et al. Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer's disease. Psychopharmacology (Berl.) 142, 334–342 (1999).
Wilens, T. E. et al. A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder. Am. J. Psychiatry 156, 1931–1937 (1999).
Wilens, T. E., Verlinden, M. H., Adler, L. A., Wozniak, P. J. & West, S. A. ABT-089, a neuronal nicotinic receptor partial agonist, for the treatment of attention-deficit/hyperactivity disorder in adults: results of a pilot study. Biol. Psychiatry 59, 1065–1070 (2006).
Sharma, T. & Antonova, L. Cognitive function in schizophrenia. Deficits, functional consequences, and future treatment. Psychiatr. Clin. North Am. 26, 25–40 (2003).
Adler, L. E., Hoffer, L. J., Griffith, J., Waldo, M. C. & Freedman, R. Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol. Psychiatry 32, 607–616 (1992).
Freedman, R. et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc. Natl Acad. Sci. USA 94, 587–592 (1997).
Freedman, R. & Leonard, S. Genetic linkage to schizophrenia at chromosome 15q14. Am. J. Med. Genet. 105, 655–657 (2001).
Freedman, R., Hall, M., Adler, L. E. & Leonard, S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol. Psychiatry 38, 22–33 (1995).
Stevens, K. E. et al. Genetic correlation of inhibitory gating of hippocampal auditory evoked response and α-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15, 152–162 (1996).
Severance, E. G. & Yolken, R. H. Novel α7 nicotinic receptor isoforms and deficient cholinergic transcription in schizophrenia. Genes Brain Behav. 7, 37–45 (2008).
Stevens, K. E. & Wear, K. D. Normalizing effects of nicotine and a novel nicotinic agonist on hippocampal auditory gating in two animal models. Pharmacol. Biochem. Behav. 57, 869–874 (1997).
Simosky, J. K., Stevens, K. E., Adler, L. E. & Freedman, R. Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology (Berl.) 165, 386–396 (2003).
Levin, E. D., Ellison, G. D., Salem, C., Jarvik, M. & Gritz, E. Behavioral effects of acute hexamethonium in rats chronically intoxicated with nicotine. Physiol. Behav. 44, 355–359 (1988).
Depatie, L. et al. Nicotine and behavioral markers of risk for schizophrenia: a double-blind, placebo-controlled, cross-over study. Neuropsychopharmacology 27, 1056–1070 (2002).
Rosse, R. B. & Deutsch, S. I. Adjuvant galantamine administration improves negative symptoms in a patient with treatment-refractory schizophrenia. Clin. Neuropharmacol. 25, 272–275 (2002).
Koike, K. et al. Tropisetron improves deficits in auditory P50 suppression in schizophrenia. Schizophr. Res. 76, 67–72 (2005).
Martin, L. F. & Freedman, R. Schizophrenia and the α7 nicotinic acetylcholine receptor. Int. Rev. Neurobiol. 78, 225–246 (2007).
Olincy, A. et al. Proof-of-concept trial of an α7 nicotinic agonist in schizophrenia. Arch. Gen. Psychiatry 63, 630–638 (2006).
Freedman, R. et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am. J. Psychiatry 165, 1040–1047 (2008).
Leiser, S. C., Bowlby, M. R., Comery, T. A. & Dunlop, J. A cog in cognition: how the α7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol. Ther. (2009). This article describes the role of α7 nAChR in pro-cognitive effects.
Lieberman, J. A., Javitch, J. A. & Moore, H. Cholinergic agonists as novel treatments for schizophrenia: the promise of rational drug development for psychiatry. Am. J. Psychiatry 165, 931–936 (2008).
Fiore, M. C. et al. Integrating smoking cessation treatment into primary care: an effectiveness study. Prev. Med. 38, 412–420 (2004).
Di Chiara, G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur. J. Pharmacol. 393, 295–314 (2000).
Corrigall, W. A. & Coen, K. M. Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology (Berl.) 104, 171–176 (1991).
Maskos, U. et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436, 103–107 (2005).
Mameli-Engvall, M. et al. Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 50, 911–921 (2006).
Pons, S. et al. Crucial role of α4 and α6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J. Neurosci. 28, 12318–12327 (2008).
Balfour, D. J. The neuronal pathways mediating the behavioral and addictive properties of nicotine. Handb. Exp. Pharmacol. 192, 209–233 (2009).
Picciotto, M. R. et al. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391, 173–177 (1998).
Watkins, S. S., Epping-Jordan, M. P., Koob, G. F. & Markou, A. Blockade of nicotine self-administration with nicotinic antagonists in rats. Pharmacol. Biochem. Behav. 62, 743–751 (1999).
Rollema, H. et al. Rationale, pharmacology and clinical efficacy of partial agonists of α4β2 nACh receptors for smoking cessation. Trends Pharmacol. Sci. 28, 316–325 (2007).
Besson, M. et al. Long-term effects of chronic nicotine exposure on brain nicotinic receptors. Proc. Natl Acad. Sci. USA 104, 8155–8160 (2007).
Lester, H. A. et al. Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS J. 11, 167–177 (2009).
Exley, R., Clements, M. A., Hartung, H., McIntosh, J. M. & Cragg, S. J. α6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology 33, 2158–2166 (2008).
Drenan, R. M. et al. In vivo activation of midbrain dopamine neurons via sensitized, high-affinity α6 nicotinic acetylcholine receptors. Neuron 60, 123–136 (2008).
Hung., R. J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452, 633–637 (2008).
Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).
Amos, C. I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nature Genet. 40, 616–622 (2008).
Salas, R., Pieri, F. & De Biasi, M. Decreased signs of nicotine withdrawal in mice null for the β4 nicotinic acetylcholine receptor subunit. J. Neurosci. 24, 10035–10039 (2004).
Janowsky, D. S., el-Yousef, M. K., Davis, J. M. & Sakerke, H. J. A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2, 632–635 (1972).
Shytle, R. D. et al. Nicotinic acetylcholine receptors as targets for antidepressants. Mol. Psychiatry 7, 525–535 (2002).
Garcia-Colunga, J., Awad, J. N. & Miledi, R. Blockage of muscle and neuronal nicotinic acetylcholine receptors by fluoxetine (Prozac). Proc. Natl Acad. Sci. USA 94, 2041–2044 (1997).
Hennings, E. C., Kiss, J. P. & Vizi, E. S. Nicotinic acetylcholine receptor antagonist effect of fluoxetine in rat hippocampal slices. Brain Res. 759, 292–294 (1997).
Maggi, L., Palma, E., Miledi, R. & Eusebi, F. Effects of fluoxetine on wild and mutant neuronal α7 nicotinic receptors. Mol. Psychiatry 3, 350–355 (1998).
Fryer, J. D. & Lukas, R. J. Antidepressants noncompetitively inhibit nicotinic acetylcholine receptor function. J. Neurochem. 72, 1117–1124 (1999).
Hennings, E. C., Kiss, J. P., De Oliveira, K., Toth, P. T. & Vizi, E. S. Nicotinic acetylcholine receptor antagonistic activity of monoamine uptake blockers in rat hippocampal slices. J. Neurochem. 73, 1043–1050 (1999).
Kiss, J. P., Hennings, E. C., De Oliveira, K., Toth, P. T. & Vizi, E. S. Nicotinic acetylcholine receptor antagonistic activity of the selective dopamine uptake blocker GBR-12909 in rat hippocampal slices. J. Physiol. 526 (2000).
Charles, H. C. et al. Brain choline in depression: in vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Prog. Neuropsychopharmacol. Biol. Psychiatry 18, 1121–1127 (1994).
Steingard, R. J. et al. Increased orbitofrontal cortex levels of choline in depressed adolescents as detected by in vivo proton magnetic resonance spectroscopy. Biol. Psychiatry 48, 1053–1061 (2000).
Popik, P., Kozela, E. & Krawczyk, M. Nicotine and nicotinic receptor antagonists potentiate the antidepressant-like effects of imipramine and citalopram. Br. J. Pharmacol. 139, 1196–1202 (2003).
Rabenstein, R. L., Caldarone, B. J. & Picciotto, M. R. The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not β2- or α7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacology (Berl.) 189, 395–401 (2006).
Mineur, Y. S., Somenzi, O. & Picciotto, M. R. Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/56J mice. Neuropharmacology 52, 1256–1262 (2007).
Andreasen, J. T., Olsen, G. M., Wiborg, O. & Redrobe, J. P. Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests. J. Psychopharmacol. (doi:10.1177/0269881108091587) (2008).
Shytle, R. D., Silver, A. A. & Sanberg, P. R. Comorbid bipolar disorder in Tourette's syndrome responds to the nicotinic receptor antagonist mecamylamine (Inversine). Biol. Psychiatry 48, 1028–1031 (2000).
Shytle, R. D., Silver, A. A., Sheehan, K. H., Sheehan, D. V. & Sanberg, P. R. Neuronal nicotinic receptor inhibition for treating mood disorders: preliminary controlled evidence with mecamylamine. Depress. Anxiety 16, 89–92 (2002).
McClernon, F. J., Hiott, F. B., Westman, E. C., Rose, J. E. & Levin, E. D. Transdermal nicotine attenuates depression symptoms in nonsmokers: a double-blind, placebo-controlled trial. Psychopharmacology (Berl.) 189, 125–133 (2006).
George, T. P., Sacco, K. A., Vessicchio, J. C., Weinberger, A. H. & Shytle, R. D. Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J. Clin. Psychopharmacol. 28, 340–344 (2008).
Fedorov, N., Moore, L., Gatto, G., Jordan, K. & Bencherif, M. Differential effects of TC-5214 [S-(+)-mecamylamine] and TC-5213 [R-(-)-mecamylamine] at low and high sensitivity human α4β2 nicotinic receptors and in animal models of depression and anxiety. The Society for Neuroscience, abstr. 39.2 (2007).
Marubio, L. M. et al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398, 805–810 (1999).
Damaj, M. I. Nicotinic regulation of calcium/calmodulin-dependent protein kinase II activation in the spinal cord. J. Pharmacol. Exp. Ther. 320, 244–249 (2007).
Cordero-Erausquin, M. & Changeux, J. P. Tonic nicotinic modulation of serotoninergic transmission in the spinal cord. Proc. Natl Acad. Sci. USA 98, 2803–2807 (2001).
Donnelly-Roberts, D. L. et al. ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine]: a novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I. In vitro characterization. J. Pharmacol. Exp. Ther. 285, 777–786 (1998).
Bannon, A. W. et al. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 279, 77–81 (1998).
Decker, M. W. et al. The role of neuronal nicotinic acetylcholine receptors in antinociception: effects of ABT-594. J. Physiol. Paris 92, 221–224 (1998).
Bitner, R. S. et al. Role of the nucleus raphe magnus in antinociception produced by ABT-594: immediate early gene responses possibly linked to neuronal nicotinic acetylcholine receptors on serotonergic neurons. J. Neurosci. 18, 5426–5432 (1998).
Decker, M. W. & Meyer, M. D. Therapeutic potential of neuronal nicotinic acetylcholine receptor agonists as novel analgesics. Biochem. Pharmacol. 58, 917–923 (1999).
Ji, J. et al. A-366833: a novel nicotinonitrile-substituted 3,6-diazabicyclo[3.2.0]-heptane α4β2 nicotinic acetylcholine receptor selective agonist: synthesis, analgesic efficacy and tolerability profile in animal models. Biochem. Pharmacol. 74, 1253–1262 (2007).
Clark, R. J., Fischer, H., Nevin, S. T., Adams, D. J. & Craik, D. J. The synthesis, structural characterization, and receptor specificity of the a-conotoxin Vc1.1. J. Biol. Chem. 281, 23254–23263 (2006).
Ellison, M. et al. α-RgIA: a novel conotoxin that specifically and potently blocks the α9α10 nAChR. Biochemistry 45, 1511–1517 (2006).
Peng, C. et al. Discovery of a novel class of conotoxin from Conus litteratus, lt14a, with a unique cysteine pattern. Peptides 27, 2174–2181 (2006).
Clark, R. J. et al. The three-dimensional structure of the analgesic α-conotoxin, RgIA. FEBS Lett. 582, 597–602 (2008).
Ellison, M. et al. α-RgIA, a novel conotoxin that blocks the α9α10 nAChR: structure and identification of key receptor-binding residues. J. Mol. Biol. 377, 1216–1227 (2008).
Satkunanathan, N. et al. α-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res. 1059, 149–158 (2005).
Vincler, M. et al. Molecular mechanism for analgesia involving specific antagonism of α9α10 nicotinic acetylcholine receptors. Proc. Natl Acad. Sci. USA 103, 17880–17884 (2006).
Nevin, S. T. et al. Are α9α10 nicotinic acetylcholine receptors a pain target for α-conotoxins? Mol. Pharmacol. 72, 1406–1410 (2007).
Callaghan, B. et al. Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation. J. Neurosci. 28, 10943–10951 (2008).
Livingstone, P. D. et al. α7 and non-α7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex. Eur. J. Neurosci. 29, 539–550 (2009).
Wonnacott, S. Gates and filters: unveiling the physiological roles of nicotine receptors in dopaminergic transmission. Br. J. Pharmacol. 153, S2–S4 (2008). This article analyses the role of nAChRs in dopaminergic signalling.
Schapira, A. H. V. et al. Novel pharmacological targets for the treatment of Parkinson's disease. Nature Rev. Drug Discov. 5 845–854 (2006).
Janhunen, S. & Ahtee, L. Differential nicotinic regulation of the nigrostriatal and mesolimbic dopaminergic pathways: implications for drug development. Neurosci. Biobehav. Rev. 31, 287–314 (2007).
Granon, S. & Changeux, J. P. Attention-deficit/hyperactivity disorder: a plausible mouse model? Acta Paediatr. 95, 645–649 (2006).
Sullivan, J. P. et al. ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine]: I. A potent and selective cholinergic channel modulator with neuroprotective properties. J. Pharmacol. Exp. Ther. 283, 235–246 (1997).
Zheng, G., Dwoskin, L. P., Deaciuc, A. G., Norrholm, S. D. & Crooks, P. A. Defunctionalized lobeline analogues: structure-activity of novel ligands for the vesicular monoamine transporter. J. Med. Chem. 48, 5551–5560 (2005).
Cartaud, J., Benedetti, E. L., Cohen, J. B., Meunier, J. C. & Changeux, J. P. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett. 33, 109–113 (1973).
Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. J. Mol. Biol. 346, 967–989 (2005).
Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003). This paper provided the first 4-Å resolution structure of the transmembrane domain of nAChRs.
Blanton, M. P. & Cohen, J. B. Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry 33, 2859–2872 (1994).
Tasneem, A., Iyer, L. M., Jakobsson, E. & Aravind, L. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol. 6, R4 (2005).
Dellisanti, C. D., Yao, Y., Stroud, J. C., Wang, Z. Z. & Chen, L. Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94 Å resolution. Nature Neurosci. 10, 953–962 (2007).
Jansen, M., Bali, M. & Akabas, M. H. Modular design of Cys-loop ligand-gated ion channels: functional 5-HT3 and GABA ρ1 receptors lacking the large cytoplasmic M3M4 loop. J. Gen. Physiol. 131, 137–146 (2008).
Hucho, F., Oberthur, W. & Lottspeich, F. The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett. 205, 137–142 (1986).
Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988).
Galzi, J. L. et al. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359, 500–505 (1992).
Corringer, P. J. et al. Molecular basis of the charge selectivity of nicotinic acetylcholine receptor and related ligand-gated ion channels. Novartis Found. Symp. 225, 215–224; discussion 224–30 (1999).
Wotring, V. E. & Weiss, D. S. Charge scan reveals an extended region at the intracellular end of the GABA receptor pore that can influence ion selectivity. J. Gen. Physiol. 131, 87–97 (2008).
Keramidas, A., Moorhouse, A. J., Schofield, P. R. & Barry, P. H. Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog. Biophys. Mol. Biol. 86, 161–204 (2004).
Sunesen, M. et al. Mechanism of Cl− selection by a glutamate-gated chloride (GluCl) receptor revealed through mutations in the selectivity filter. J. Biol. Chem. 281, 14875–14881 (2006).
Gunthorpe, M. J. & Lummis, S. C. Conversion of the ion selectivity of the 5-HT3a receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J. Biol. Chem. 276, 10977–10983 (2001).
Corringer, P. J. et al. Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron 22, 831–843 (1999).
Bertrand, D., Galzi, J. L., Devillers-Thiery, A., Bertrand, S. & Changeux, J. P. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α7 nicotinic receptor. Proc. Natl Acad. Sci. USA 90, 6971–6975 (1993).
Changeux, J. P. Allosteric interactions interpreted in terms of quaternary structure. Brookhaven Symp. Biol. 17, 232–249 (1964).
Cui, Q. & Karplus, M. Allostery and cooperativity revisited. Protein Sci. 17, 1295–1307 (2008). A recent review of the relevance of the concept of allostery in molecular dynamics studies.
Adair, G. S. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J. Biol. Chem. 63, 529–545 (1925).
Koshland, D. E. Jr. Correlation of structure and function in enzyme action. Science 142, 1533–1541 (1963).
Colquhoun, D. & Sakmann, B. From muscle endplate to brain synapses: a short history of synapses and agonist-activated ion channels. Neuron 20, 381–387 (1998).
Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).
Katz, B. & Thesleff, S. A study of the desensitization produced by acetylcholine at the motor end-plate. J. Physiol. 138, 63–80 (1957).
Bouzat, C., Bartos, M., Corradi, J. & Sine, S. M. The interface between extracellular and transmembrane domains of homomeric Cys-loop receptors governs open-channel lifetime and rate of desensitization. J. Neurosci. 28, 7808–7819 (2008).
White, B. H. & Cohen, J. B. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist. J. Biol. Chem. 267, 15770–15783 (1992).
Le Novere, N., Corringer, P. J. & Changeux, J. P. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J. Neurobiol. 53, 447–456 (2002).
Gotti, C., Zoli, M. & Clementi, F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci. 27, 482–491 (2006).
Biton, B. et al. SSR180711, a novel selective α7 nicotinic receptor partial agonist: (1) binding and functional profile. Neuropsychopharmacology 32, 1–16 (2007).
Sydserff, S. et al. Selective α7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem. Pharmacol. 22 Apr 2009 (doi:10.1016/j.bcp.2009.07.005).
Lopez-Hernandez, G. et al. Partial agonist and neuromodulatory activity of S 24795 for α7 nAChR responses of hippocampal interneurons. Neuropharmacology 53, 134–144 (2007).
Hauser, T. A. et al. TC-5619: an α7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem. Pharmacol. 24 Mar 2009 (doi:10.1016/j.bcp.2009.05.030).
Cohen, C. et al. SSR591813, a novel selective and partial α4β2 nicotinic receptor agonist with potential as an aid to smoking cessation. J. Pharmacol. Exp. Ther. 306, 407–420 (2003).
Dunbar, G. et al. Pharmacokinetics and safety profile of ispronicline (TC-1734), a new brain nicotinic receptor partial agonist, in young healthy male volunteers. J. Clin. Pharmacol. 46, 715–726 (2006).
Lippiello, P. M. et al. TC-5214 (S-(+)-mecamylamine): a neuronal nicotinic receptor modulator with antidepressant activity. CNS Neurosci. Ther. 14, 266–277 (2008).
Dziewczapolski, G., Glogowski, C. M., Masliah, E. & Heinemann, S. F. Deletion of the α7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer's disease. J. Neurosci. 29, 8805–8815 (2009).