Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors

The Journal of Physiological Sciences - Tập 67 - Trang 235-245 - 2016
Mami Noda1, AI Kobayashi1
1Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan

Tóm tắt

Alpha 7 subunits of nicotinic acetylcholine receptors (nAChRs) are expressed in microglia and are involved in the suppression of neuroinflammation. Over the past decade, many reports show beneficial effects of nicotine, though little is known about the mechanism. Here we show that nicotine inhibits lipopolysaccharide (LPS)-induced proton (H+) currents and morphological change by using primary cultured microglia. The H+ channel currents were measured by whole-cell patch clamp method under voltage-clamp condition. Increased H+ current in activated microglia was attenuated by blocking NADPH oxidase. The inhibitory effect of nicotine was due to the activation of α7 nAChR, not a direct action on the H+ channels, because the effects of nicotine was cancelled by α7 nAChR antagonists. Neurotoxic effect of LPS-activated microglia due to inflammatory cytokines was also attenuated by pre-treatment of microglia with nicotine. These results suggest that α7 nAChRs in microglia may be a therapeutic target in neuroinflammatory diseases.

Tài liệu tham khảo

Chae Y, Lee JC, Park KM, Kang OS, Park HJ, Lee H (2008) Subjective and autonomic responses to smoking-related visual cues. J Physiol Sci 58:139–145 Morens DM, Grandinetti A, Reed D, White LR, Ross GW (1995) Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue? Neurology 45:1041–1051 Lee PN (1994) Smoking and Alzheimer’s disease: a review of the epidemiological evidence. Neuroepidemiology 13:131–144 Barreto GE, Iarkov A, Moran VE (2014) Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson’s disease. Front Aging Neurosci 6:340 Burghaus L, Schutz U, Krempel U, De Vos RA, Jansen Steur EN, Wevers A et al (2000) Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res 76:385–388 Kuno M, Ando H, Morihata H, Sakai H, Mori H, Sawada M et al (2009) Temperature dependence of proton permeation through a voltage-gated proton channel. J Gen Physiol 134:191–205 Quik M, Jeyarasasingam G (2000) Nicotinic receptors and Parkinson’s disease. Eur J Pharmacol 393:223–230 Quik M, Polonskaya Y, Gillespie A, KL G, Langston JW (2000) Differential alterations in nicotinic receptor alpha6 and beta3 subunit messenger RNAs in monkey substantia nigra after nigrostriatal degeneration. Neuroscience 100:63–72 Belluardo N, Mudo G, Blum M, Fuxe K (2000) Central nicotinic receptors, neurotrophic factors and neuroprotection. Behav Brain Res 113:21–34 Freedman R, Adams CE, Leonard S (2000) The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 20:299–306 Leonard S, Breese C, Adams C, Benhammou K, Gault J, Stevens K et al (2000) Smoking and schizophrenia: abnormal nicotinic receptor expression. Eur J Pharmacol 393:237–242 Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K et al (1998) Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 24:189–202 Sanberg PR, Silver AA, Shytle RD, Philipp MK, Cahill DW, Fogelson HM et al (1997) Nicotine for the treatment of Tourette’s syndrome. Pharmacol Ther 74:21–25 Nordberg A, Alafuzoff I, Winblad B (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31:103–111 Uchida S, Hotta H, Misawa H, Kawashima K (2013) The missing link between long-term stimulation of nicotinic receptors and the increases of acetylcholine release and vasodilation in the cerebral cortex of aged rats. J Physiol Sci 63:95–101 Kim SU, De Vellis J (2005) Microglia in health and disease. J Neurosci Res 81:302–313 Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318 Perry VH, Andersson PB, Gordon S (1993) Macrophages and inflammation in the central nervous system. Trends Neurosci 16:268–273 Takano T, Han X, Deane R, Zlokovic B, Nedergaard M (2007) Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann N Y Acad Sci 1097:40–50 Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553 Streit WJ, Kincaid-Colton CA (1995) The brain’s immune system. Sci Am 273(54–55):58–61 Takatsuru Y, Nabekura J, Ishikawa T, Kohsaka S, Koibuchi N (2015) Early-life stress increases the motility of microglia in adulthood. J Physiol Sci 65:187–194 Jarvik ME (1991) Beneficial effects of nicotine. Br J Addict 86:571–575 Baron JA (1996) Beneficial effects of nicotine and cigarette smoking: the real, the possible and the spurious. Br Med Bull 52:58–73 Capasso M (2014) Regulation of immune responses by proton channels. Immunology 143:131–137 Wu LJ, Wu G, Akhavan Sharif MR, Baker A, Jia Y, Fahey FH et al (2012) The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nat Neurosci 15:565–573 Morihata H, Kawawaki J, Sakai H, Sawada M, Tsutada T, Kuno M (2000) Temporal fluctuations of voltage-gated proton currents in rat spinal microglia via pH-dependent and -independent mechanisms. Neurosci Res 38:265–271 Morihata H, Nakamura F, Tsutada T, Kuno M (2000) Potentiation of a voltage-gated proton current in acidosis-induced swelling of rat microglia. J Neurosci 20:7220–7227 Eder C, Decoursey TE (2001) Voltage-gated proton channels in microglia. Prog Neurobiol 64:277–305 Decoursey TE, Morgan D, Cherny VV (2003) The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422:531–534 Fang B, Wang D, Huang M, Yu G, Li H (2010) Hypothesis on the relationship between the change in intracellular pH and incidence of sporadic Alzheimer’s disease or vascular dementia. Int J Neurosci 120:591–595 Ramsey IS, Ruchti E, Kaczmarek JS, Clapham DE (2009) Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc Natl Acad Sci USA 106:7642–7647 El Chemaly A, Okochi Y, Sasaki M, Arnaudeau S, Okamura Y, Demaurex N (2010) VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification. J Exp Med 207:129–139 Noda M, Nakanishi H, Nabekura J, Akaike N (2000) AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 20:251–258 Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C et al (2007) Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci 27:13065–13073 Beppu K, Kosai Y, Kido MA, Akimoto N, Mori Y, Kojima Y et al (2013) Expression, subunit composition, and function of AMPA-type glutamate receptors are changed in activated microglia; possible contribution of GluA2 (GluR-B)-deficiency under pathological conditions. Glia 61:881–891 Hagino Y, Kariura Y, Manago Y, Amano T, Wang B, Sekiguchi M et al (2004) Heterogeneity and potentiation of AMPA type of glutamate receptors in rat cultured microglia. Glia 47:68–77 Matsuura T, Mori T, Hasaka M, Kuno M, Kawawaki J, Nishikawa K et al (2012) Inhibition of voltage-gated proton channels by local anaesthetics in GMI-R1 rat microglia. J Physiol 590:827–844 Song JH, Marszalec W, Kai L, Yeh JZ, Narahashi T (2012) Antidepressants inhibit proton currents and tumor necrosis factor-alpha production in BV2 microglial cells. Brain Res 1435:15–23 Barao VA, Ricomini-Filho AP, Faverani LP, Del Bel Cury AA, Sukotjo C, Monteiro DR et al (2015) The role of nicotine, cotinine and caffeine on the electrochemical behavior and bacterial colonization to cp-Ti. Mater Sci Eng C Mater Biol Appl 56:114–124 Akimoto N, Ifuku M, Mori Y, Noda M (2013) Effects of chemokine (C–C motif) ligand 1 on microglial function. Biochem Biophys Res Commun 436:455–461 Mori Y, Tomonaga D, Kalashnikova A, Furuya F, Akimoto N, Ifuku M et al (2015) Effects of 3,3′,5-triiodothyronine on microglial functions. Glia 63:906–920 Noda M, Kariura Y, Pannasch U, Nishikawa K, Wang L, Seike T et al (2007) Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J Neurochem 101:397–410 Klee R, Heinemann U, Eder C (1999) Voltage-gated proton currents in microglia of distinct morphology and functional state. Neuroscience 91:1415–1424 Deleo FR, Renee J, Mccormick S, Nakamura M, Apicella M, Weiss JP et al (1998) Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J Clin Invest 101:455–463 Decoursey TE (2003) Interactions between NADPH oxidase and voltage-gated proton channels: why electron transport depends on proton transport. FEBS Lett 555:57–61 Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250–256 Chao CC, Hu S, Peterson PK (1995) Glia, cytokines, and neurotoxicity. Crit Rev Neurobiol 9:189–205 Abd-El-Basset E, Fedoroff S (1995) Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. J Neurosci Res 41:222–237 Visentin S, Agresti C, Patrizio M, Levi G (1995) Ion channels in rat microglia and their different sensitivity to lipopolysaccharide and interferon-gamma. J Neurosci Res 42:439–451 Szteyn K, Yang W, Schmid E, Lang F, Shumilina E (2012) Lipopolysaccharide-sensitive H+ current in dendritic cells. Am J Physiol Cell Physiol 303:C204–C212 Fujiwara Y, Kurokawa T, Takeshita K, Kobayashi M, Okochi Y, Nakagawa A et al (2012) The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H(+) channel Hv1. Nat Commun 3:816 Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B et al (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279:1415–1421 Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476 Haslund-Vinding J, Mcbean G, Jaquet V, Vilhardt F (2016) NADPH oxidases in microglia oxidant production: activating receptors, pharmacology, and association with disease. Br J Pharmacol. doi:10.1111/bph.13426 Henderson LM, Chappell JB, Jones OT (1987) The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J 246:325–329 Schrenzel J, Serrander L, Banfi B, Nusse O, Fouyouzi R, Lew DP et al (1998) Electron currents generated by the human phagocyte NADPH oxidase. Nature 392:734–737 Decoursey TE, Cherny VV, Zhou W, Thomas LL (2000) Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils. Proc Natl Acad Sci USA 97:6885–6889 Decoursey TE, Cherny VV (1993) Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys J 65:1590–1598 Henderson LM, Chappell JB, Jones OT (1988) Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Further evidence for the presence of an H+ conducting channel. Biochem J 251:563–567 Moon JH, Kim SY, Lee HG, Kim SU, Lee YB (2008) Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar beta amyloid peptide (1-42)-stimulated microglia. Exp Mol Med 40:11–18 Weiss GB (1968) Dependence of nicotine-C14 distribution and movements upon pH in frog sartorius muscle. J Pharmacol Exp Ther 160:135–147 Suzuki T, Hide I, Matsubara A, Hama C, Harada K, Miyano K et al (2006) Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 83:1461–1470 Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J et al (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337–343 Lahat A, Ben-Horin S, Lang A, Fudim E, Picard O, Chowers Y (2008) Lidocaine down-regulates nuclear factor-kappaB signalling and inhibits cytokine production and T cell proliferation. Clin Exp Immunol 152:320–327 Wu LJ (2014) Voltage-gated proton channel HV1 in microglia. Neuroscientist 20:599–609 Wu LJ (2014) Microglial voltage-gated proton channel Hv1 in ischemic stroke. Transl Stroke Res 5:99–108 Hurley LL, Tizabi Y (2013) Neuroinflammation, neurodegeneration, and depression. Neurotox Res 23:131–144 Zhong C, Talmage DA, Role LW (2013) Nicotine elicits prolonged calcium signaling along ventral hippocampal axons. PLoS One 8:e82719 Tyagi E, Agrawal R, Nath C, Shukla R (2010) Cholinergic protection via alpha7 nicotinic acetylcholine receptors and PI3 K-Akt pathway in LPS-induced neuroinflammation. Neurochem Int 56:135–142