Nickel nanoparticles supported on titanium oxides nanotubes as an efficient catalyst for hydrodechlorination of 3-chlorophenol

Vietnam Journal of Catalysis and Adsorption - Tập 10 Số 4 - Trang 120-124 - 2021
Thanh Thien Co1, Thanh Hai Do2, Thanh My Nguyen2, Dinh Tuan Anh Lu2, Thi Duyen Diep2, Duong Viet Tan Vo2, Thi Yen Nhi Nguyen2, Thuan Khiet Trinh Nguyen2, Ngoc Thao Nguyen Du2, Thien An Nguyen2, Pham Anh Vu Ho1, Thi Diem Huong Nguyen1, Hue Ngan Dai1, Tan Phat Vu1
1University of Science, Ho Chi Minh City. Vietnam National University, Ho Chi Minh City, VIETNAM
2University of Science, Ho Chi Minh City, Vietnam

Tóm tắt

Titanium oxides nanotubes (TNTs) were prepared by hydrothermal method and used as nano-support for nickel nanoparticles. Indeed, nickel nanoparticles supported TNTs (Ni-TNTs) were in situ synthesized from nickel salt and TNTs by chemical reduction method using sodium borohydride (NaBH4) as reducing agent. The physio-chemical properties of Ni-TNTs nano-catalysts were fully characterized such as Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), and X-ray diffraction (XRD). The results showed that nickel salt was completely reduced to Ni0 metal with an average particle size of 12 nm. On the other hand, the catalytic activity is tested by the hydrodechlorination of chlorinated organic compounds. The hydrode-chlorinated conversion of 3-chlorophenol was obtained over 97%.

Từ khóa

#Hydrodechlorination #nanocatalyst #nickel nanoparticles #titanium oxides nanotubes

Tài liệu tham khảo

L. Gui, R. W. Gillham. ACS Div. Environ. Chem. Prepr. 41 (1), (2001) 1132–1137.

http://doi.org/10.1021/bk-2002-0837.ch014

G. Chehade, N. Alrawahi, B. Yuzer, I. Dincer. Sci. Total Environ. 712 (2020) 136358.

https://doi.org/10.1016/ j.scitotenv.2019.136358

T. Doan, A. Dang, D. Nguyen, T. H. Vuong, M. T. Le, H. P. Thanh. J. Chem. 5552187 (2021) 1-15. https://doi.org /10.1155/2021/5552187

R. A. Khaydarov, R. R. Khaydarov, O. Gapurova. J. Colloid Interface Sci. 406 (2013) 105–110. http://dx.doi. org/10.1016/j.jcis.2013.05.067

X. Ma, Y. Liu, X. Li, J. Xu, G. Gu, C. Xia. Appl. Catal. B Environ. 165 (2015) 351–359.

http://dx.doi.org/10.1016/ j.apcatb.2014.10.035

S. Du, X. Wang, J. Shao, H. Yang, G. Xu, H. Chen. Energy 74 (C), (2014) 295–300.

http://dx.doi.org/10.1016/ j.energy.2014.01.012

T. T. Co, D. K. Le, V. D. Le, T. N. T. Doan. Sci. Technol Dev. J. 23 (4), (2020) 764–770.

http://doi.org/10.32508/ stdj.v23i4.2451

K. Wiltschka, L. Neumann, M. Werheid, M. Bunge, R. A. Düring, K. Mackenzie, et al. Appl. Catal. B Environ. 275 (2020) 19100–19109. https://doi.org/10.1016/j.apcatb. 2020.119100

L. Xu, E. E. Stangland, A. L. Dumesic, M. Mavrikakis. ACS Catal. 11 (13), (2021) 7890–7895.

http://doi.org/10.1021/ acscatal.1c00940

Y. Xu, J. Ma, Y. Xu, H. Li, P. Li, et al. Appl. Cata.l A Gen 413-414 (2012) 350–357. http://doi.org/10.1016/j.apcata. 2011.11.026

M. Balda, F. D. Kopinke. Chem. Eng. J. 338 (2020) 124185. https://doi.org/10.1016/j.cej.2020.124185

K. Nakajima, K. Nansai, K. Matsubae, M. Tomita, W. Takayanagi, T. Nagasaka. Sci. Total Environ. 586 (2017) 730–737. http://dx.doi.org/10.1016/j.scitotenv.2017.02. 049

T. T. Co, N. M. Nguyen, L. D. K. Vo. Vietnam J. Chem. 59 (2), (2021) 192–197. http://doi.org/10.1002/vjch.202000 142

I. Khan, K. Saeed, I. Khan. Arabian Journal of Chemistry. 12 (2019) 908–931. http://doi.org/10.1016/j.arabjc. 2017.05.011

N. Neelakandeswari, G. Sangami, P. Emayavaramban, S. B. Ganesh, R. Karvembu, N. Dharmaraj. J. Mol. Catal. A Chem. 356 (2012) 90–99. http://doi.org/10.1016/j.molcata.2011.12.029

M. Dusselier, M. E. Davis. Chem. Rev. 118 (11), (2018) 5265–5329.

https://doi.org/10.1021/acs.chemrev. 7b00738

H. Liang, Z. Wang, L. Liao, L. Chen, Z. Li, J. Feng. Optik. 136 (2017) 44–51.

http://dx.doi.org/10.1016/j.ijleo.2017. 02.018

C. Wang, Z. H. Shi, L. Peng, W. M. He, L. B. Liang, K. Z. Li.. Surfaces and Interfaces. 7 (2017) 116–124. http://doi.org/10.1016/j.surfin.2017.03.007

T. N. T. Le, B. T. Tran, T. H. T. Vu. Tạp chí khoa học ĐHSP Thành phố Hồ Chí Minh. 2 (67), (2015) 1–2. http://journal.hcmue.edu.vn/index.php/hcmuejos/article/download/451/443

V. S. Nguyen, T. D. T. Duong, T. P. Nguyen, T. S.N. Le. Sci. Tech. Dev. J. 18 (2015) 228–236.

http://stdj.scienceandtechnology.com.vn/index.php/stdj/article/download/1188/1556/

T. T. Co, T. K. A. Tran, T. H. L. Doan, T. D. Diep. J. Chem. 8580754 (2021) 1–9.

http://doi.org/10.1155/2021/8580754

L. G. Vernasqui, A. F. Sardinha, S. S. Oishi, N. G. Ferreira. J. Mater. Res. Technol. 12 (2021) 597–612. https://doi. org/10.1016/j.jmrt.2021.02.099

M. Tak, H. Tomar, R. G. Mote. Procedia CIRP. 95 (2020) 803–8. https://doi.org/10.1016/j.procir.2020.01.140

D. Li, S. Komarneni. J. Am. Ceram. Soc. 89 (5), (2006) 1510–1517. http://doi.org/10.1111/j.1551-2916.2006.00925.x