Nanorod bán dẫn từ NiTe cho khả năng giới hạn quang và cảm biến hydrogen peroxide

Springer Science and Business Media LLC - Tập 33 - Trang 1538-1547 - 2023
M. Manikandan1,2, E. Manikandan1, Razan A. Alshgari3, Abdulnasse Mahmoud Karami3, Awais Ahmad4
1Centre for Innovation and Product Development, Vellore Institute of Technology, Chennai, India
2School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
3Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
4Departamento de Quimica Organica, Universidad de Cordoba, Cordoba, Spain

Tóm tắt

Kỹ thuật thủy nhiệt đã được sử dụng để chế tạo nanorod telluride nickel (NiTe NRs) với sự hỗ trợ của acid ascorbic và bromide cetrimonium (CTAB) làm tác nhân khử. Nghiên cứu từ tính phụ thuộc nhiệt độ đối với NiTe NRs cho thấy hành vi ferromagnetism. Dưới sự kích thích bằng laser 532 nm, các vật liệu thu được có tính chất giới hạn quang tốt hơn, với hệ số hấp thụ hai photon là 6,6 × 10−10 m/W và khả năng giới hạn quang là 2,44 J/cm2 ở mức 200 µJ. Electrode được sửa đổi bằng NiTe NRs thể hiện hoạt tính điện xúc tác hydrogen peroxide xuất sắc với khả năng tái lập, lặp lại và độ bền. Nó cho thấy độ nhạy vượt trội là 6,35 µAµM−1 cm−2 và giới hạn phát hiện là 6 nM. Trong sự hiện diện của các chất gây nhiễu như dopamine, acid uric, acid ascorbic, glucose và acid folic, điện cực này có mức độ chọn lọc cao. Phân tích mẫu thực tế cho cảm biến NiTe NRs đã được thực hiện trong huyết thanh người và huyết thanh não chuột chứng tỏ khả năng phục hồi tốt.

Từ khóa

#NiTe NRs #bán dẫn #giới hạn quang #cảm biến hydrogen peroxide #tính nhạy #chọn lọc

Tài liệu tham khảo

Y. Li, J.J. Zhang, J. Xuan, L.P. Jiang, J.J. Zhu, Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem. commun. 12, 777–780 (2010). https://doi.org/10.1016/j.elecom.2010.03.031 K. Fang, Y. Yang, L. Fu, H. Zheng, J. Yuan, L. Niu, Highly selective H2O2 sensor based on 1-D nanoporous Pt@C hybrids with core-shell structure. Sensors Actuators, B Chem. 191, 401–407 (2014). https://doi.org/10.1016/j.snb.2013.09.090 S. Kogularasu, M. Govindasamy, S.M. Chen, M. Akilarasan, V. Mani, 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sensors Actuators B Chem. 253, 773–783 (2017). https://doi.org/10.1016/j.snb.2017.06.172 S. Dong, J. Xi, Y. Wu, H. Liu, C. Fu, H. Liu, F. Xiao, High loading MnO2 nanowires on graphene paper: Facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal. Chim. Acta 853, 200–206 (2015). https://doi.org/10.1016/j.aca.2014.08.004 S. Kubendhiran, B. Thirumalraj, S. Chen, C. Karuppiah, Journal of Colloid and Interface Science Electrochemical co-preparation of cobalt sulfide/reduced graphene oxide composite for electrocatalytic activity and determination of H2O2 in biological samples. J. Colloid Interface Sci. 509, 153–162 (2018). https://doi.org/10.1016/j.jcis.2017.08.087 K.J. Babu, A. Zahoor, K.S. Nahm, R. Ramachandran, M.A.J. Rajan, G. Gnana-Kumar, The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide. J. Nanoparticle Res. 16, 2250 (2014). https://doi.org/10.1007/s11051-014-2250-4 T. Zheng, X. Lu, X. Bian, C. Zhang, Y. Xue, X. Jia, C. Wang, Fabrication of ternary CNT/PPy/K xMnO 2 composite nanowires for electrocatalytic applications. Talanta 90, 51–56 (2012). https://doi.org/10.1016/j.talanta.2011.12.066 A.K. Dutta, S. Das, P.K. Samanta, S. Roy, B. Adhikary, P. Biswas, Non-enzymatic amperometric sensing of hydrogen peroxide at a CuS modified electrode for the determination of urine H2O2. Electrochim. Acta. 144, 282–287 (2014). https://doi.org/10.1016/j.electacta.2014.08.051 L. Wan, J. Liu, X.-J. Huang, Novel magnetic nickel telluride nanowires decorated with thorns: synthesis and their intrinsic peroxidase-like activity for detection of glucose. Chem. Commun 50, 13589–13591 (2014). https://doi.org/10.1039/c4cc06684g M. Manikandan, P.N. Francis, S. Dhanuskodi, N. Maheswari, G. Muralidharan, High performance supercapacitor behavior of hydrothermally synthesized CdTe nanorods. J. Mater. Sci. Mater. Electron. 29, 17397–17404 (2018). https://doi.org/10.1007/s10854-018-9837-y A. Padmanaban, N. Padmanathan, T. Dhanasekaran, R. Manigandan, S. Srinandhini, P. Sivaprakash, S. Arumugam, V. Narayanan, Hexagonal phase Pt-doped cobalt telluride magnetic semiconductor nanoflakes for electrochemical sensing of dopamine. J. Electroanal. Chem. 877, 114658 (2020). https://doi.org/10.1016/j.jelechem.2020.114658 B. Golrokh-Amin, U. De Silva, J. Masud, M. Nath, Ultrasensitive and highly selective Ni3Te2 as a nonenzymatic glucose sensor at extremely low working potential. ACS Omega 4, 11152–11162 (2019). https://doi.org/10.1021/acsomega.9b01063 B. Fatima, U. Saeed, D. Hussain, S.E.Z. Jawad, H.S. Rafiq, S. Majeed, S. Manzoor, S.Y. Qadir, M.N. Ashiq, M. Najam-ul-Haq, Facile hydrothermal synthesis of NiTe nanorods for non-enzymatic electrochemical sensing of whole blood hemoglobin in pregnant anemic women. Anal. Chim. Acta. 1189, 339204 (2022). https://doi.org/10.1016/j.aca.2021.339204 J.J. Zhang, Y.G. Liu, L.P. Jiang, J.J. Zhu, Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin. Electrochem. Commun. 10, 355–358 (2008). https://doi.org/10.1016/j.elecom.2007.12.017 Y. Liu, J. Zhang, W. Hou, J.J. Zhu, A Pd/SBA-15 composite: synthesis, characterization and protein biosensing. Nanotechnology 19, 135707 (2008). https://doi.org/10.1088/0957-4484/19/13/135707 K.S. Bhat, H.C. Barshilia, H.S. Nagaraja, Porous nickel telluride nanostructures as bifunctional electrocatalyst towards hydrogen and oxygen evolution reaction. Int. J. Hydrogen Energy. 42, 24645–24655 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.098 Z. Wang, L. Zhang, In situ growth of NiTe nanosheet film on nickel foam as electrocatalyst for oxygen evolution reaction. Electrochem. commun. 88, 29–33 (2018). https://doi.org/10.1016/j.elecom.2018.01.014 S. Pradhan, R. Das, S. Biswas, D.K. Das, R. Bhar, R. Bandyopadhyay, P. Pramanik, Chemical synthesis of nanoparticles of nickel telluride and cobalt telluride and its electrochemical applications for determination of uric acid and adenine. Electrochim Acta. 238, 185–193 (2017). https://doi.org/10.1016/j.electacta.2017.04.023 S.M. Yong, P. Muralidharan, S.H. Jo, D.K. Kim, One-step hydrothermal synthesis of CdTe nanowires with amorphous carbon sheaths. Mater. Lett. 64, 1551–1554 (2010). https://doi.org/10.1016/j.matlet.2010.04.045 M. Manikandan, K. Subramani, M. Sathish, S. Dhanuskodi, NiTe nanorods as electrode material for high performance supercapacitor applications. ChemistrySelect 3, 9034–9040 (2018). https://doi.org/10.1002/slct.201801421 M. Manikandan, K. Subramani, S. Dhanuskodi, M. Sathish, One-pot hydrothermal synthesis of nickel cobalt telluride nanorods for hybrid energy storage systems. Energy Fuels 35, 12527–12537 (2021). https://doi.org/10.1021/acs.energyfuels.1c00351 J. Song, Y. Lin, Y. Zhan, Y. Tian, G. Liu, S. Yu, Superlong high-quality tellurium nanotubes: synthesis, characterization and optical property. Cryst. Growth Des. 8, 1902–1908 (2008). https://doi.org/10.1021/cg701125k H. Chen, M. Fan, C. Li, G. Tian, C. Lv, D. Chen, K. Shu, J. Jiang, One-pot synthesis of hollow NiSe-CoSe nanoparticles with improved performance for hybrid supercapacitors. J. Power Sources. 329, 314–322 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.097 Y. Lei, N. Miao, J. Zhou, Q.U. Hassan, J. Wang, Novel magnetic properties of CoTe nanorods and diversified CoTe2 nanostructures obtained at different NaOH concentrations. Sci. Technol. Adv. Mater. 18, 325–333 (2017). https://doi.org/10.1080/14686996.2017.1317218 N. Umeyama, M. Tokumoto, S. Yagi, M. Tomura, K. Tokiwa, T. Fujii, R. Toda, N. Miyakawa, S.I. Ikeda, Synthesis and magnetic properties of NiSe, NiTe, CoSe, and CoTe. Jpn. J. Appl. Phys. 51, 053001 (2012). https://doi.org/10.1143/JJAP.51.053001 M. Ragam, G. Kalaiselvan, S. Arumugam, N. Sankar, K. Ramachandran, Room temperature ferromagnetism in MnxZn1−xS (x=0.00–0.07) nanoparticles. J. Alloys Compd. 541, 222–226 (2012). https://doi.org/10.1016/j.jallcom.2012.07.024 A. Seetharaman, D. Sivasubramanian, V. Gandhiraj, V.R. Soma, Tunable nanosecond and femtosecond nonlinear optical properties of C-N-S-doped TiO2 nanoparticles. J. Phys. Chem. C. 121, 24192–24205 (2017). https://doi.org/10.1021/acs.jpcc.7b08778 M. Zhao, R. Peng, Q. Zheng, Q. Wang, M.-J. Chang, Y. Liu, Y.-L. Song, H.-L. Zhang, Broadband optical limiting response of a graphene–PbS nanohybrid. Nanoscale 7, 9268–9274 (2015). https://doi.org/10.1039/C5NR01088H C.S. Suchand-Sandeep, A.K. Samal, T. Pradeep, R. Philip, Optical limiting properties of Te and Ag2Te nanowires. Chem. Phys. Lett. 485, 326–330 (2010). https://doi.org/10.1016/j.cplett.2009.12.065 K. Sridharan, V. Tamilselvan, D. Yuvaraj, K. Narasimha Rao, R. Philip, Synthesis and nonlinear optical properties of lead telluride nanorods. Opt. Mater. 34, 639–645 (2012). https://doi.org/10.1016/j.optmat.2011.09.009 A. Das, S. Ratha, R.K. Yadav, A. Mondal, C.S. Rout, K.V. Adarsh, Strong third-order nonlinear response and optical limiting of α-NiMoO4 nanoparticles. J Appl. Phys. 122, 013107 (2017). https://doi.org/10.1063/1.4992806 M. Govindasamy, V. Mani, S.M. Chen, R. Karthik, K. Manibalan, R. Umamaheswari, MoS2 flowers grown on graphene/carbon nanotubes: A versatile substrate for electrochemical determination of hydrogen peroxide. Int. J. Electrochem. Sci. 11, 2954–2961 (2016). https://doi.org/10.20964/110402954 M. Manikandan, S. Dhanuskodi, N. Maheswari, G. Muralidharan, C. Revathi, R.T. Rajendra Kumar, G. Mohan-Rao, High performance supercapacitor and non-enzymatic hydrogen peroxide sensor based on tellurium nanoparticles. Sens. Bio-Sensing Res. 13, 40–48 (2017). https://doi.org/10.1016/j.sbsr.2017.02.001 M.R. Guascito, D. Chirizzi, C. Malitesta, T. Siciliano, A. Tepore, Te oxide nanowires as advanced materials for amperometric nonenzymatic hydrogen peroxide sensing. Talanta 115, 863–869 (2013). https://doi.org/10.1016/j.talanta.2013.06.032 M.R. Guascito, D. Chirizzi, C. Malitesta, E. Mazzotta, M. Siciliano, T. Siciliano, A. Tepore, A. Turco, Low-potential sensitive H2O2 detection based on composite micro tubular Te adsorbed on platinum electrode. Biosens. Bioelectron. 26, 3562–3569 (2011). https://doi.org/10.1016/j.bios.2011.02.002 M. Mayilmurugan, G. Rajamanickam, R. Perumalsamy, D. Sivasubramanian, Nickel cobalt telluride nanorods for sensing the hydrogen peroxide in living cells. ACS Omega 7, 14556–14561 (2022). https://doi.org/10.1021/acsomega.1c06007