Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bibb, 2014, Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: From genome mining to manipulation of biosynthetic pathways, J. Ind. Microbiol. Biotechnol., 41, 425, 10.1007/s10295-013-1348-5
Xiong, 2013, Recent advances in the discovery and development of marine microbial natural products, Mar. Drugs, 11, 700, 10.3390/md11030700
Harvey, 2015, The re-emergence of natural products for drug discovery in the genomics era, Nat. Rev. Drug Discov., 14, 111, 10.1038/nrd4510
Baltz, 2008, Renaissance in antibacterial discovery from actinomycetes, Curr. Opin. Pharmacol., 8, 557, 10.1016/j.coph.2008.04.008
Bentley, 2002, Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, 417, 141, 10.1038/417141a
Challis, 2014, Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways, J. Ind. Microbiol. Biotechnol., 41, 219, 10.1007/s10295-013-1383-2
Zerikly, 2009, Strategies for the discovery of new natural products by genome mining, ChemBioChem, 10, 625, 10.1002/cbic.200800389
Bibb, 2012, Streptomyces coelicolor as an expression host for heterologous gene clusters, Methods Enzymol., 517, 279, 10.1016/B978-0-12-404634-4.00014-0
Sanger, 1977, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA, 74, 5463, 10.1073/pnas.74.12.5463
Myers, 2000, A whole-genome assembly of Drosophila, Science, 287, 2196, 10.1126/science.287.5461.2196
Next-generation-sequencing. Available online: http://www.nature.com/subjects/next-generation-sequencing.
Weber, 2015, antiSMASH 3.0—Comprehensive resource for the genome mining of biosynthetic gene clusters, Nucleic Acids Res., 43, W237, 10.1093/nar/gkv437
Medema, 2015, Minimum information about a biosynthetic gene cluster, Nat. Chem. Biol., 11, 625, 10.1038/nchembio.1890
Margulies, 2005, Genome sequencing in microfabricated high-density picolitre reactors, Nature, 437, 376, 10.1038/nature03959
Bentley, 2008, Accurate whole human genome sequencing using reversible terminator chemistry, Nature, 456, 53, 10.1038/nature07517
Loman, 2012, Performance comparison of benchtop high-throughput sequencing platforms, Nat. Biotechnol., 30, 434, 10.1038/nbt.2198
Eid, 2009, Real-time DNA sequencing from single polymerase molecules, Science, 323, 133, 10.1126/science.1162986
Minion-access-programme. Available online: https://nanoporetech.com/community/the-minion-access-programme.
Feng, 2015, Nanopore-based fourth-generation DNA sequencing technology, Genom. Proteom. Bioinform., 13, 4, 10.1016/j.gpb.2015.01.009
Laver, 2015, Assessing the performance of the Oxford Nanopore Technologies MinION, Biomol. Detect Quantif., 3, 1, 10.1016/j.bdq.2015.02.001
Schadt, 2010, A window into third-generation sequencing, Hum. Mol. Genet., 19, R227, 10.1093/hmg/ddq416
Nakamura, 2011, Sequence-specific error profile of Illumina sequencers, Nucleic Acids Res., 39, e90, 10.1093/nar/gkr344
Kozarewa, 2009, Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes, Nat. Methods, 6, 291, 10.1038/nmeth.1311
Quail, 2012, A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers, BMC Genomics, 13, 341, 10.1186/1471-2164-13-341
Weaver, 2004, Genome plasticity in Streptomyces: Identification of 1 Mb TIRs in the S. coelicolor A3(2) chromosome, Mol. Microbiol., 51, 1535, 10.1111/j.1365-2958.2003.03920.x
Doroghazi, 2013, Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes, BMC Genomics, 14, 611, 10.1186/1471-2164-14-611
Commins, 2009, Computational biology methods and their application to the comparative genomics of endocellular symbiotic bacteria of insects, Biol. Proced. Online, 11, 52, 10.1007/s12575-009-9004-1
Koren, 2015, One chromosome, one contig: Complete microbial genomes from long-read sequencing and assembly, Curr. Opin. Microbiol., 23, 110, 10.1016/j.mib.2014.11.014
Thermofisher. Available online: http://www.thermofisher.com.
Pacific Biosciences. Available online: http://www.pacb.com/smrt-science/smrt-sequencing/read-lengths.
Rutherford, 2000, Artemis: Sequence visualization and annotation, Bioinformatics, 16, 944, 10.1093/bioinformatics/16.10.944
Cole, 1998, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, 393, 537, 10.1038/31159
Ikeda, 2003, Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis, Nat. Biotechnol., 21, 526, 10.1038/nbt820
Wu, 2012, Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008, BMC Genomics, 13, 337, 10.1186/1471-2164-13-337
Zaburannyi, 2014, Insights into naturally minimised Streptomyces albus J1074 genome, BMC Genomics, 15, 97, 10.1186/1471-2164-15-97
Foulston, 2010, Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes, Proc. Natl. Acad. Sci. USA, 107, 13461, 10.1073/pnas.1008285107
Foulston, L. (2010). Cloning and analysis of the microbisporicin lantibiotic gene cluster from Microbispora corallina. [Ph.D. Thesis, University of East Anglia].
Claesen, 2010, Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides, Proc. Natl. Acad. Sci. USA, 107, 16297, 10.1073/pnas.1008608107
Sherwood, 2013, Cloning and analysis of the planosporicin lantibiotic biosynthetic gene cluster of Planomonospora alba, J. Bacteriol., 195, 2309, 10.1128/JB.02291-12
Sherwood, E. (2011). The planosporicin gene cluster from Planomonospora alba. [Ph.D. Thesis, University of East Anglia].
Wyszynski, 2010, Dissecting tunicamycin biosynthesis by genome mining: Cloning and heterologous expression of a minimal gene cluster, Chem. Sci., 1, 581, 10.1039/c0sc00325e
Song, 2012, Posttranslational [small beta]-methylation and macrolactamidination in the biosynthesis of the bottromycin complex of ribosomal peptide antibiotics, Chem. Sci., 3, 3522, 10.1039/c2sc21183a
Castro, 2015, The Streptomyces leeuwenhoekii genome: De novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2, BMC Genomics, 16, 485, 10.1186/s12864-015-1652-8
Laureti, 2011, Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens, Proc. Natl. Acad. Sci. USA, 108, 6258, 10.1073/pnas.1019077108
Li, 2015, Activating a cryptic ansamycin biosynthetic gene cluster to produce three new naphthalenic octaketide ansamycins with n-pentyl and n-butyl side chains, Org. Lett., 17, 3706, 10.1021/acs.orglett.5b01686
Claesen, 2011, Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350, J. Bacteriol., 193, 2510, 10.1128/JB.00171-11
Jiang, 2013, Identification and characterization of the cuevaene A biosynthetic gene cluster in Streptomyces sp. LZ35, ChemBioChem, 14, 1468, 10.1002/cbic.201300316
Wattam, 2014, PATRIC, the bacterial bioinformatics database and analysis resource, Nucleic Acids Res., 42, D581, 10.1093/nar/gkt1099
Schorn, 2014, Genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors, ACS Chem. Biol., 9, 301, 10.1021/cb400699p
Bragg, L.M., Stone, G., Butler, M.K., Hugenholtz, P., and Tyson, G.W. (2013). Shining a light on dark sequencing: Characterising errors in Ion Torrent PGM data. PLoS Comput. Biol., 9.
Vijgenboom, 2013, The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island, Genome Biol. Evol., 5, 1165, 10.1093/gbe/evt082
Girard, 2014, Analysis of novel Kitasatosporae reveals significant evolutionary changes in conserved developmental genes between Kitasatospora and Streptomyces, Antonie Van Leeuwenhoek, 106, 365, 10.1007/s10482-014-0209-1
Hoefler, B.C., Konganti, K., and Straight, P.D. (2013). De Novo Assembly of the Streptomyces sp. Strain Mg1 Genome Using PacBio Single-Molecule Sequencing. Genome Announc., 1.
Harrison, 2014, Recently published Streptomyces genome sequences, Microb. Biotechnol., 7, 373, 10.1111/1751-7915.12143
Castro, 2015, Identification and heterologous expression of the chaxamycin biosynthesis gene cluster from Streptomyces leeuwenhoekii, Appl. Environ. Microbiol., 81, 5820, 10.1128/AEM.01039-15
Busarakam, 2014, Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees, Antonie Van Leeuwenhoek, 105, 849, 10.1007/s10482-014-0139-y
Alt, 2015, Biosynthesis of the novel macrolide antibiotic anthracimycin, ACS Chem. Biol., 10, 2468, 10.1021/acschembio.5b00525
Wright, 1992, Codon usage in the G+C-rich Streptomyces genome, Gene, 113, 55, 10.1016/0378-1119(92)90669-G
Bibb, 1984, The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences, Gene, 30, 157, 10.1016/0378-1119(84)90116-1
Otto, 2010, Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology, Bioinformatics, 26, 1704, 10.1093/bioinformatics/btq269
Koren, 2012, Hybrid error correction and de novo assembly of single-molecule sequencing reads, Nat. Biotechnol., 30, 693, 10.1038/nbt.2280
Chin, 2013, Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nat. Methods, 10, 563, 10.1038/nmeth.2474
Anand, 2010, SBSPKS: Structure based sequence analysis of polyketide synthases, Nucleic Acids Res., 38, W487, 10.1093/nar/gkq340
Bhatnagar, 2010, Immense essence of excellence: Marine microbial bioactive compounds, Mar. Drugs, 8, 2673, 10.3390/md8102673
Imhoff, 2011, Bio-mining the microbial treasures of the ocean: New natural products, Biotechnol. Adv., 29, 468, 10.1016/j.biotechadv.2011.03.001
Manivasagan, 2014, Pharmaceutically active secondary metabolites of marine actinobacteria, Microbiol. Res., 169, 262, 10.1016/j.micres.2013.07.014
Kennedy, 2010, Marine metagenomics: New tools for the study and exploitation of marine microbial metabolism, Mar. Drugs, 8, 608, 10.3390/md8030608
Kennedy, 2007, Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges, Appl. Microbiol. Biotechnol., 75, 11, 10.1007/s00253-007-0875-2
Kleigrewe, 2015, Combining mass spectrometric metabolic profiling with genomic analysis: A powerful approach for discovering natural products from cyanobacteria, J. Nat. Prod., 78, 1671, 10.1021/acs.jnatprod.5b00301
Piel, 2011, Approaches to capturing and designing biologically active small molecules produced by uncultured microbes, Annu. Rev. Microbiol., 65, 431, 10.1146/annurev-micro-090110-102805
Reen, 2015, The sound of silence: Activating silent biosynthetic gene clusters in marine microorganisms, Mar. Drugs, 13, 4754, 10.3390/md13084754
Trindade, 2015, Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates, Front. Microbiol., 6, 890, 10.3389/fmicb.2015.00890
Jensen, 2015, The marine actinomycete genus Salinispora: A model organism for secondary metabolite discovery, Nat. Prod. Rep., 32, 738, 10.1039/C4NP00167B
Feling, 2003, Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora, Angew. Chem. Int. Ed. Engl., 42, 355, 10.1002/anie.200390115
Mincer, 2002, Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments, Appl. Environ. Microbiol., 68, 5005, 10.1128/AEM.68.10.5005-5011.2002
Bonet, 2015, Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin, J. Nat. Prod., 78, 539, 10.1021/np500664q
Bibb, 2011, Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters, Microb. Biotechnol., 4, 207, 10.1111/j.1751-7915.2010.00219.x
Salzberg, 2005, Beware of mis-assembled genomes, Bioinformatics, 21, 4320, 10.1093/bioinformatics/bti769
Murphy, 2015, NxRepair: Error correction in de novo sequence assembly using Nextera mate pairs, PeerJ, 3, e996, 10.7717/peerj.996
Tao, 2016, A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis, Chem. Sci., 7, 376, 10.1039/C5SC03059E
Latreille, 2007, Optical mapping as a routine tool for bacterial genome sequence finishing, BMC Genomics, 8, 321, 10.1186/1471-2164-8-321
Muggli, 2015, Misassembly detection using paired-end sequence reads and optical mapping data, Bioinformatics, 31, i80, 10.1093/bioinformatics/btv262
Ohnishi, 2008, Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350, J. Bacteriol., 190, 4050, 10.1128/JB.00204-08
Seven days The news in brief. Business. End sequence. Available online: http://www.nature.com/news/seven-days-18-24-october-2013-1.13994.
Frasch, 2013, Design-based re-engineering of biosynthetic gene clusters: Plug-and-play in practice, Curr. Opin. Biotechnol., 24, 1144, 10.1016/j.copbio.2013.03.006