Newton polygon of exponential sums in two variables with triangular base
Tài liệu tham khảo
Adolphson, 1989, Exponential sums and Newton polyhedra: cohomology and estimates, Ann. Math., 130, 367, 10.2307/1971424
Berndt, 1981, The determination of Gauss sums, Bull. Am. Math. Soc., 5, 107, 10.1090/S0273-0979-1981-14930-2
Davis, 2016, Newton slopes for Artin–Schreier–Witt towers, Math. Ann., 364, 1451, 10.1007/s00208-015-1262-4
Kosters
Kosters, 2018, On slopes of L-functions of Zp-covers over the projective line, J. Number Theory, 187, 430, 10.1016/j.jnt.2017.11.009
Li, 2018, The stable property of Newton slopes for general Witt towers, J. Number Theory, 185, 144, 10.1016/j.jnt.2017.08.035
Liu, 2009, T-adic exponential sums over finite fields, Algebra Number Theory, 3, 489, 10.2140/ant.2009.3.489
Liu, 2017, Slopes of eigencurves over the boundary of the weight space, Duke Math. J., 166, 1739, 10.1215/00127094-0000012X
Liu, 2007, The L-functions of Witt coverings, Math. Z., 255, 95, 10.1007/s00209-006-0014-2
Ouyang, 2016, Newton polygons of L functions of polynomials xd+ax, J. Number Theory, 160, 478, 10.1016/j.jnt.2015.09.020
Ouyang, 2016, Newton polygons of L-functions of polynomials xd+axd−1 with p≡−1(modd), Finite Fields Appl., 37, 285, 10.1016/j.ffa.2015.10.003
Ren, 2020, Generic Newton polygon for exponential sums in n-variable with parallelotope base, Am. J. Math., 142, 1595, 10.1353/ajm.2020.0040
Ren, 2018, Slopes for higher rank Artin–Schreier–Witt Towers, Trans. Am. Math. Soc., 370, 6411, 10.1090/tran/7162
Scholten, 2003, Slope estimates of Artin-Schreier curves, Compos. Math., 137, 275, 10.1023/A:1024116216156
Serre, 1962, Endomorphismes complétement continus des espaces de Banach p-adiques, Publ. Math. IHES, 12, 69, 10.1007/BF02684276
Wan, 2004, Variation of p-adic Newton polygons for L-functions of exponential sums, Asian J. Math., 8, 427, 10.4310/AJM.2004.v8.n3.a4
Zhu, 2003, p-adic variation of L-functions of one variable exponential sums, I, Am. J. Math., 125, 669, 10.1353/ajm.2003.0022
Zhu