Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp mới để đặc trưng ngưỡng thấm của composite polymer polyethylene và carbon nanotube sử dụng rheology biến đổi Fourier (FT)
Tóm tắt
Trong bài báo này, một phương pháp mới để đặc trưng ngưỡng thấm của composite polymer tạo thành từ polyethylene (PE) với các nanotube carbon đơn tường (SWCNTs) và đa tường (MWCNTs) được trình bày. Các thí nghiệm cắt dao động nhỏ và lớn (SAOS và LAOS) đã được tiến hành để đặc trưng hóa mức độ phân tán và ngưỡng thấm. Phân tích phản ứng ứng suất trong chế độ LAOS phụ thuộc vào biên độ biến dạng và tần số đã được thực hiện bằng cách sử dụng Rheology biến đổi Fourier (FT). Tham số phi tuyến tính nội tại tại điểm không biến dạng, Q0(ω), được tính toán bằng cách nội suy I3/1(γ0, ω) và được sử dụng để định lượng độ phi tuyến đo được qua FT-Rheology. Thú vị thay, một sự giảm Q0 phụ thuộc vào phân tỉ trọng CNT ở tần số cố định đã được phát hiện, điều này xảy ra dưới ngưỡng thấm. Ngược lại, một sự gia tăng mạnh mẽ trong Q0 trên ngưỡng thấm đã được quan sát. Do đó, phương pháp mới dựa trên quan sát này được đề xuất và mô tả trong bài báo này có tiềm năng dẫn đến việc hiểu biết tốt hơn về mối quan hệ giữa cấu trúc và thuộc tính trong composite polymer.
Từ khóa
#ngưỡng thấm #composite polymer #polyethylene #nanotube carbon #rheology biến đổi FourierTài liệu tham khảo
Ahirwal, D., S. Filipe, I. Neuhaus, M. Busch, G. Schlatter, and M. Wilhelm, 2014, Large deformation oscillatory shear and uniaxial extensional rheology of blends from linear and long-chain branched polyethylene and polypropylene, J. Rheol. 58, 635–658.
Ajayan, P.M., L.S. Schadler, C. Giannaris, and A. Rubio, 2000, Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness, Adv. Mater. 12, 750–753.
Alig, I., D. Lellinger, S.M. Dudkin, and P. Pötschke, 2007, Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites: Recovery after shear and crystallization, Polymer 48, 1020–1029.
Alig, I., D. Lellinger, M. Engle, T. Skipa, and P. Pötschke, 2008a, Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments, Polymer 49, 1902–1909.
Alig, I., T. Skipa, D. Lellinger, and P. Pötschke, 2008b, Destruction and formation of a carbon nanotube network in polymer melts: Rheology and conductivity spectroscopy, Polymer 49, 3524–3532.
Baughman, R.H., A.A. Zakhidov, and W.A. Heer, 2002, Carbon Nanotubes-the Route Toward Applications, Science 297, 787–792.
Cho, K.S., K. Hyun, K.H. Ahn, and S.J. Lee, 2005, A geometrical interpretation of large amplitude oscillatory shear response, J. Rheol. 49, 747–758.
Dealy, J.M. and R.G. Larson, 2006, Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again, Hanser Publishers.
Du, F., R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, and K.I. Winey, 2004, Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity, Macromolecules 37, 9048–9055.
Ewoldt, R.H., C. Clasen, A.E. Hosoi, and G.H. McKinley, 2007, Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion, Soft Matter 3, 634–643.
Ewoldt, R.H., A.E. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol. 52, 1427–1458.
Gurnon, A.K. and N.J. Wagner, 2012, Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles, J. Rheol. 56, 333–351.
Hassanabadi, H.M., M. Abbasi, M. Wilhelm, and D. Rodrigue, 2013, Validity of the modified molecular stress function theory to predict the rheological properties of polymer nanocomposites, J. Rheol. 57, 881–899.
Huang, C.L. and C. Wang, 2011, Rheological and conductive percolation laws for syndiotactic polystyrene composites filled with carbon nanocapsules and carbon nanotubes, Carbon 49, 2334–2344.
Hyun, K., E.S. Baik, K.H. Ahn, S.J. Lee, M. Sugimoto, and K. Koyama, 2007, Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts, J. Rheol. 51, 1319–1342.
Hyun, K. and M. Wilhelm, 2009, Establishing a New Mechanical Nonlinear Coefficient Q from FT-Rheology: First Investigation of Entangled Linear and Comb Polymer Model Systems, Macromolecules 42, 411–422.
Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.
Hyun, K., W. Kim, S.J. Park, and M. Wilhelm, 2013, Numerical simulation results of the nonlinear coefficient Q from FT-Rheology using a single mode pom-pom model, J. Rheol. 57, 1–25.
Iijima, S., 1991, Helical microtubules of graphitic carbon, Nature 354, 56–58.
Kashiwagi, T., E. Grulke, J. Hilding, R. Harris, W. Awad, and J. Douglas, 2002, Thermal Degradation and Flammability Properties of Poly(propylene)/Carbon Nanotube Composites, Macromol. Rapid Commun. 23, 761–765.
Kempf, M., D. Ahirwal, M. Cziep, and M. Wilhelm, 2013, Synthesis, linear and non-linear melt rheology of well-defined comb-architectures of PS and PpMS with a low and controlled degree of long-chain branching, Macromolecules 16, 4978–4994.
Kharchenko, S.B., J.F. Douglas, J. Obrzut, E.A. Grulke, and K.B. Migler, 2004, Flow-induced properties of nanotube-filled polymer materials, Nat. Mater. 3, 564–568.
Kota, A.K., B.H. Cipriano, M.K. Duesterberg, A.L. Gershon, D. Powell, S.R. Raghavan, and H.A. Bruck, 2007, Electrical and Rheological Percolation in Polystyrene/MWCNT Nanocomposites, Macromolecules 40, 7400–7406.
Lebedkin, S., P. Schweiss, B. Renker, S. Malik, F. Hennrich, M. Neumaier, C. Stoermer, and M.M. Kappes, 2002, Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization, Carbon 40, 417–423.
Lee, S.H., M.W. Kim, S.H. Kim, and J.R. Youn, 2008, Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips, Eur. Polym. J. 44, 1620–1630.
Lim, H.T., K.H. Ahn, J.S. Hong, and K. Hyun, 2013, Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow, J. Rheol. 57, 767–789.
McNally, T., P. Pötschke, P. Halley, M. Murphy, D. Martin, S.E.J. Bell, G.P. Brennan, D. Bein, P. Lemoine, and J.P. Quinn, 2005, Polyethylene multiwalled carbon nanotube composites, Polymer 46, 8222–8232.
McLeish, T.C.B. and R.G. Larson, 1998, Molecular constitutive equations for a class of branched polymers: The pom-pom polymer, J. Rheol. 42, 81–110.
Ramasubramaniam, R., J. Chen, and H. Liu, 2003, Homogeneous carbon nanotube/polymer composites for electrical applications, Appl. Phys. Lett. 83, 2928–2930.
Reinheimer, K., M. Grosso, and M. Wilhelm, 2011, Fourier Transform Rheology as a universal non-linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions, J. Colloid Interf. Sci. 360, 818–825.
Reinheimer, K., M. Grosso, F. Hetzel, J. Kubel, and M. Wilhelm, 2012, Fourier Transform Rheology as an innovative morphological characterization technique for the emulsion volume average radius and its distribution, J. Colloid Interf. Sci. 380, 201–212.
Rogers, S.A. and M. P. Lettinga, 2012, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models, J. Rheol. 56, 1–25.
Sahimi, M., 1994, Application of percolation theory, Taylor & Francis.
Schlatter, G., G. Fleury, and R. Muller, 2005, Fourier Transform Rheology of Branched Polyethylene: Experiments and Models for Assessing the Macromolecular Architecture, Macromolecules 38, 6492–6503.
Skipa, T., D. Lellinger, W. Böhm, M. Saphiannnikova, and I. Alig, 2010, Influence of shear deformation on carbon nanotube networks in polycarbonate melts: Interplay between build-up and destruction of agglomerates, Polymer 51, 201–210.
Sun, G., G. Chen, Z. Liu, and M. Chen, 2010, Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites, Carbon 48, 1434–1440.
Sun, T., R.R. Chance, W.W. Graessley, and D.J. Lohse, 2004, A Study of the Separation Principle in Size Exclusion Chromatography, Macromolecules 37, 4304–4312.
Terrones, M., 2003, Science and technology of twenty-first centuary: Synthesis, Properties, and Applications of Carbon Nanotubes, Ann. Rev. Mater. Res. 33, 419–501.
Vigolo, B., C. Coulon, M. Maugey, C. Zakri, and P. Poulin, 2005, An Experimental Approach to the Percolation of Sticky Nanotubes, Science 309, 920–923.
Vittorias, I. and M. Wilhelm, 2007, Application of FT Rheology to Industrial Linear and Branched Polyethylene Blends, Macromol. Mater. Eng. 292, 935–948.
Vittorias, I., D. Lilge, V. Baroso, and M. Wilhelm, 2011, Linear and non-linear rheology of linear polydisperse polyethylene, Rheol. Acta 50, 691–700.
Wagner, M.H., V.H. Rolon-Garrido, K. Hyun, and M. Wilhelm, 2011, Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers, J. Rheol. 55, 495–516.
Wilhelm, M., 2002, Fourier-Transform Rheology, Macromol. Mater. Eng. 287, 83–105.
Wilhelm, M., K. Reinheimer, and J. Kubel, 2012, Optimizing the Sensitivity of FT-Rheology to Quantify and Differentiate for the First Time the Nonlinear Mechanical Response of Dispersed Beer Foams of Light and Dark Beer, Z. Phys. Chem. 226, 547–567.
Winter, H.H. and M. Mours, 1997, Rheology of Polymers Near Liquid-Solid Transitions, Adv. Polym. Sci. 134, 165–234.