New variation on a theme: structure and mechanism of action of hydrolytic antibody 7F11, an aspartate rich relation of catalytic antibodies 17E8 and 29G11
Tài liệu tham khảo
Al-Lazikani, 1997, Standard conformations for the canonical structures of immunoglobulins, J. Mol. Biol., 273, 927, 10.1006/jmbi.1997.1354
Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389
Arkin, 1998, Probing the importance of second sphere residues in an esterolytic antibody by phage display, J. Mol. Biol., 284, 1083, 10.1006/jmbi.1998.2234
Arevalo, 1993, Three-dimensional structure of an anti-steroid Fab' and progesterone-Fab' complex, J. Mol. Biol., 231, 103, 10.1006/jmbi.1993.1260
Baca, 1997, Phage display of a catalytic antibody to optimize affinity for transition-state analog binding, Proc. Natl. Acad. Sci. U. S. A., 94, 10063, 10.1073/pnas.94.19.10063
Barre, 1994, Structural conservation of hypervariable regions in immunoglobulins evolution, Nat. Struct. Biol., 1, 915, 10.1038/nsb1294-915
Bayly, 1993, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, J. Phys. Chem., 97, 10269, 10.1021/j100142a004
Blackburn, 2000, vol. 8b, 403
Buchbinder, 1998, A comparison of the crystallographic structures of two catalytic antibodies with esterase activity, J. Mol. Biol., 282, 1033, 10.1006/jmbi.1998.2025
Coates, 2001, A neutron Laue diffraction study of endothiapepsin: implications for the aspartic proteinase mechanism, Biochemistry, 44, 13149, 10.1021/bi010626h
Charbonnier, 1995, Crystal structure of the complex of a catalytic antibody Fab fragment with a transition state analog: structural similarities in esterase-like catalytic antibodies, Proc. Natl. Acad. Sci. U. S. A., 95, 11721, 10.1073/pnas.92.25.11721
Charbonnier, 1996, pH influences on the crystal structures and mechanistic properties of a hydrolytic antibody, Isr. J. Chem., 36, 143, 10.1002/ijch.199600020
Charbonnier, 1997, Similarities of hydrolytic antibodies revealed by their X-ray structures: a review, Biochimie, 79, 653, 10.1016/S0300-9084(97)83498-0
Charbonnier, 1997, Structural convergence in the active sites of a family of catalytic antibodies, Science (Washington, DC), 275, 1140, 10.1126/science.275.5303.1140
Chong, 1999, Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7, Proc. Natl. Acad. Sci. U. S. A., 96, 14330, 10.1073/pnas.96.25.14330
Chothia, 1987, Canonical structures for the hypervariable regions of immunoglobulins, J. Mol. Biol., 196, 901, 10.1016/0022-2836(87)90412-8
Chothia, 1989, Conformations of immunoglobulin hypervariable regions, Nature (London), 342, 877, 10.1038/342877a0
Cornell, 1993, Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation, J. Am. Chem. Soc., 115, 9620, 10.1021/ja00074a030
Cornell, 1995, A second generation force field for simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc., 117, 5179, 10.1021/ja00124a002
Darrin, 1993, The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods, J. Chem. Phys., 99, 8345, 10.1063/1.465608
Dauber-Osguthorpe, 1988, Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins: Struct. Func. Gene., 4, 31, 10.1002/prot.340040106
Ding, 2000, Structural identification of a key protective B-cell epitope in Lyme disease antigen Ospa, J. Mol. Biol., 302, 1153, 10.1006/jmbi.2000.4119
Foote, 1994, Conformational isomerism and the diversity of antibodies, Proc. Natl. Acad. Sci. U. S. A., 91, 10370, 10.1073/pnas.91.22.10370
Fox, 1997, Ligand binding in the catalytic antibody 17E8. A free energy perturbation calculation study, J. Am. Chem. Soc., 119, 11571, 10.1021/ja964315j
Frisch, 1998
Fujii, 1995, Correlation between antigen-combining-site structures and functions within a panel of catalytic antibodies generated against a single transition-state analog, J. Am. Chem. Soc., 117, 6199, 10.1021/ja00128a006
Fujii, 1998, Evolving catalytic antibodies in a phage-displayed combinatorial library, Nat. Biotechnol., 16, 463, 10.1038/nbt0598-463
Gibbs, 1992, Substituent effects of an antibody-catalyzed hydrolysis of phenyl esters: further evidence for an acyl-antibody intermediate, J. Am. Chem. Soc., 114, 3528, 10.1021/ja00035a057
Gigant, 1997, Mechanism of inactivation of a catalytic antibody by p-nitrophenyl esters, Eur. J. Biochem., 246, 471, 10.1111/j.1432-1033.1997.t01-1-00471.x
Golinelli-Pimpaneau, 1994, Crystal structure of a catalytic antibody Fab with esterase-like activity, Structure (London), 2, 175, 10.1016/S0969-2126(00)00019-8
Gololobov, 1999, Innate antibody catalysis, Mol. Immunol., 36, 1215, 10.1016/S0161-5890(99)00141-8
Guo, 1994, Kinetic and mechanistic characterization of an efficient hydrolytic antibody: evidence for the formation of an acyl intermediate, J. Am. Chem. Soc., 116, 6062, 10.1021/ja00093a002
Guo, 1995, Mechanistically different catalytic antibodies obtained from immunization with a single transition-state analog, Proc. Natl. Acad. Sci. U. S. A., 92, 1694, 10.1073/pnas.92.5.1694
Herron, 1991, An autoantibody to single-stranded DNA: comparison of the three-dimensional structure of the unliganded Fab and a deoxynucleotide–fab complex, Proteins, 11, 159, 10.1002/prot.340110302
Hilvert, 2000, Critical analysis of antibody catalysis, Annu. Rev. Biochem., 69, 751, 10.1146/annurev.biochem.69.1.751
Hilvert, 1998, The structural basis of antibody catalysis, Bioorg. Chem.: Pept., 335
Honegger, 2001, Yet another numbering system for immunoglobulin variable domains: an automatic modeling and analysis tool, J. Mol. Biol., 309, 657, 10.1006/jmbi.2001.4662
Izadyar, 1993, Monoclonal anti-idiotypic antibodies as functional internal images of enzyme active sites: production of a catalytic antibody with a cholinesterase activity, Proc. Natl. Acad. Sci. U. S. A., 90, 8876, 10.1073/pnas.90.19.8876
Janda, 1988, Induction of an antibody that catalyses the hydrolysis of an amide bond, Science, 241, 1188, 10.1126/science.3413482
Jorgensen, 1983, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926, 10.1063/1.445869
Kabat, 1991
Kamei, 2001, Computational 3-D modeling and site-directed mutation of an antibody that binds Neu2en5Ac, a transition state analogue of a sialic acid, Proteins: Struct. Funct. Gene., 45, 285, 10.1002/prot.1149
Kolesnikov, 2000, Enzyme mimicry by the antiidiotypic antibody approach, Proc. Natl. Acad. Sci. U. S. A., 97, 13526, 10.1073/pnas.200360497
Krebs, 1995, Detection of a catalytic antibody species acylated at the active site by electrospray mass spectrometry, Biochemistry, 34, 720, 10.1021/bi00003a002
Laaksonen, 1992, A graphics program for the analysis and display of molecular dynamics trajectories, J. Mol. Graph., 10, 33, 10.1016/0263-7855(92)80007-Z
Larsen, 2001, Structural basis for a disfavored elimination reaction in catalytic antibody 1D4, J. Mol. Biol., 314, 93, 10.1006/jmbi.2001.5112
Lim, 1995, Molecular dynamics of the anti-fluorescein 4-4-20 antigen-binding fragment: 1. Computer simulations, Biochemistry, 34, 6962, 10.1021/bi00021a008
MacBeath, 1996, Hydrolytic antibodies: variations on a theme, Chem. Biol., 3, 433, 10.1016/S1074-5521(96)90091-5
Martin, 1996, Accessing the Kabat antibody sequence database by computer, Proteins: Struct. Func. Gene., 25, 130, 10.1002/(SICI)1097-0134(199605)25:1<130::AID-PROT11>3.3.CO;2-Y
Martin, 1996, Structural families in loops of homologous proteins: automatic classification, modeling and application to antibodies, J. Mol. Biol., 263, 800, 10.1006/jmbi.1996.0617
McCafferty, 1994, Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display, Appl. Biochem. Biotechnol., 47, 157, 10.1007/BF02787932
Morea, 1997, Antibody structure, prediction and redesign, Biophys. Chem., 68, 9, 10.1016/S0301-4622(96)02266-1
Morea, 1998, Conformations of the third hypervariable region in the VH domain of immunoglobulins, J. Mol. Biol., 275, 269, 10.1006/jmbi.1997.1442
Morris, 1998, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comp. Chem., 19, 1639, 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
Morris, 1999, vol. 3.0
Northrop, 2001, Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases, Acc. Chem. Res., 34, 790, 10.1021/ar000184m
Oliva, 1998, Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction, J. Mol. Biol., 279, 1193, 10.1006/jmbi.1998.1847
Patten, 1996, The immunological evolution of catalysis, Science (Washington, DC), 271, 1086, 10.1126/science.271.5252.1086
Pearlman, 1995, AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Comput. Phys. Commun., 91, 1, 10.1016/0010-4655(95)00041-D
Pearlman, 1995
Ponder, 1987, Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes, J. Mol. Biol., 193, 775, 10.1016/0022-2836(87)90358-5
Rini, 1992, Structural evidence for induced fit as a mechanism for antibody–antigen recognition, Science, 255, 959, 10.1126/science.1546293
Roberts, 1994, Catalytic antibody model and mutagenesis implicate arginine in transition-state stabilization, J. Mol. Biol., 235, 1098, 10.1006/jmbi.1994.1060
Roussel, 1999, The structure of an entire noncovalent immunoglobulin kappa light-chain dimer (Bence–Jones protein) reveals a weak and unusual constant domains association, Eur. J. Biochem., 260, 192, 10.1046/j.1432-1327.1999.00136.x
Sanger, 1977, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U. S. A., 74, 5463, 10.1073/pnas.74.12.5463
Schaftenaar, 2000, Molden: a pre- and post-processing program for molecular and electronic structures, J. Comput.-Aided Mol. Des., 14, 123, 10.1023/A:1008193805436
Shirai, 1996, Structural classification of CDR-H3 in antibodies, FEBS Lett., 399, 1, 10.1016/S0014-5793(96)01252-5
Shirai, 1999, H3-rules:Identification of CDR-H3 structures in antibodies, FEBS Lett., 455, 188, 10.1016/S0014-5793(99)00821-2
Smithrud, 2000, Cyclic peptide formation catalysed by an antibody ligase, Proc. Natl. Acad. Sci. U. S. A., 97, 1953, 10.1073/pnas.040534397
Sotriffer, 1998, Ligand-induced Domain movement in an antibody Fab: molecular dynamics studies confirm the unique domain movement observed experimentally for Fab NC6.8 upon complexation and reveal its segmental flexibility, J. Mol. Biol., 278, 301, 10.1006/jmbi.1998.1684
Sotriffer, 2000, Elbow flexibility and Ligand-induced rearrangements in antibody Fab NC6.8: large effects of a small hapten, Biophys. J., 79, 614, 10.1016/S0006-3495(00)76320-X
Stevenson, 2000, Catalytic antibodies and other biomimetic catalysts, Nat. Prod. Rep., 17, 535, 10.1039/b006389o
Stevenson, 1999, A chemiluminescent catalytic antibody, Chem. Commun. (Cambridge), 2105, 10.1039/a906566k
Stewart, 1994, Site-directed mutagenesis of a catalytic antibody: an arginine and a histidine residue play key roles, Biochemistry, 33, 1994, 10.1021/bi00174a004
Tantillo, 2001, Canonical binding arrays as molecular recognition elements in the immune system: tetrahedral anions and the ester hydrolysis transition state, Chem. Biol., 8, 535, 10.1016/S1074-5521(01)00035-7
Tantillo, 2002, Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis, J. Comput. Chem., 23, 84, 10.1002/jcc.10019
Thayer, 1999, Structural basis for amide hydrolysis catalyzed by the 43C9 antibody, J. Mol. Biol., 291, 329, 10.1006/jmbi.1999.2960
Thomas, 1996, Catalytic antibodies-reaching adolescence?, Nat. Prod. Rep., 13, 479, 10.1039/NP9961300479
Wade, 1996, P1–S1 interactions control the enantioselectivity and hydrolytic activity of catalytic antibody 17E8, J. Am. Chem. Soc., 118, 6510, 10.1021/ja9605329
Wade, 1997, The structural and functional basis of antibody catalysis, Annu. Rev. Biophys. Biomol. Struct., 26, 461, 10.1146/annurev.biophys.26.1.461
Wade, 1999, Expression of binding energy on an antibody reaction coordinate, J. Am. Chem. Soc., 121, 11935, 10.1021/ja9928879
Wedemayer, 1997, Structural insights into the evolution of an antibody combining site, Science (Washington, DC), 276, 1665, 10.1126/science.276.5319.1665
Wedemayer, 1997, Crystal structures of the free and liganded form of an esterolytic catalytic antibody, J. Mol. Biol., 268, 390, 10.1006/jmbi.1997.0974
Weiner, 1984, A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc., 106, 765, 10.1021/ja00315a051
Weiner, 1986, An all atom force field for simulations of proteins and nucleic acids, J. Comput. Chem., 7, 230, 10.1002/jcc.540070216
Wentworth, 2001, Catalytic antibodies: structure and function, Cell Biochem. Biophys., 35, 63, 10.1385/CBB:35:1:63
Yang, 1999, Mutational analysis of the affinity maturation of antibody 48G7, J. Mol. Biol., 294, 1191, 10.1006/jmbi.1999.3197
Zemel, 1994, Differences in the biochemical properties of esterolytic antibodies correlate with structural diversity, Mol. Immunol., 31, 127, 10.1016/0161-5890(94)90085-X
Zhou, 1994, Crystal structure of a catalytic antibody with a serine protease active site, Science (Washington, DC), 265, 1059, 10.1126/science.8066444