New traveling wave solutions of MHD micropolar fluid in porous medium

Journal of the Egyptian Mathematical Society - Tập 28 - Trang 1-22 - 2020
Muhammad Jamil1, Arsalan Ahmed1
1Department of Mathematics, NED University of Engineering & Technology, Karachi, Pakistan

Tóm tắt

This paper aims to determine the exact solutions of non-Newtonian fluid namely micropolar fluid with MHD in a porous medium by traveling wave method. The governing equations of incompressible micropolar fluid with MHD in a porous medium are non-linear PDEs reduced to ODEs through wave parameter ξ=mx+ny+Ut. The set of new exact solutions are determined for five different cases. In special cases, the solution for micropolar fluid with and without MHD and porous effects can also be obtained from general solutions. Furthermore, these solution reduces to a Newtonian solution if we put vortex viscosity κ→0. Finally, the influence of the material and other parameters of interest on the fluid motion, as well as a comparison among micropolar and Newtonian fluids is also analyzed by 2D and 3D graphical illustrations.

Tài liệu tham khảo

Abdel-Rahman, G. M.: Effect of magnetohydrodynamic on thin films of unsteady micropolar fluid through a porous medium. J. Mod. Phys.2, 1290–1304 (2011). Ishak, A., Nazar, R., Pop, I.: Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Convers. Manag.49, 3265–3269 (2008). Shehzad, S. A., Hayat, T., Alsaedi, A.: Three-dimensional MHD flow of Casson fluid in porous medium with heat generation. J. Appl. Fluid Mech. 9, 215–223 (2016). Khalid, A., Khan, I., Khan, A., Sha, S.: Influence of wall couple stress in MHD flow of a micropolar fluid in a porous medium with energy and concentration transfer. Results Phys. 9, 1172–1184 (2018). Fatunmbi, E. O., Adeniyan, A.: MHD stagnation point-flow of micropolar fluids past a permeable stretching plate in porous media with thermal radiation chemical reaction and viscous dissipation. J. Adv. Math. Comput. Sci. 26, 1–19 (2018). Hammouch, Z: Multiple solutions of steady MHD flow of dilatant fluids. arXiv preprint (2008). arXiv:0802.1851. Makinde, O. D., Khan, W. A., Khan, Z. H.: Analysis of MHD nanofluid flow over a convectively heated permeable vertical plate embedded in a porous medium. J. Nanofluids. 5(4), 574–580 (2016). Makinde, O. D., Kumar, K. G., Manjunatha, S., Gireesha, B. J.: Effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro-polar fluid over a stretching surface with fluid particles suspension. Defect Diffus. Forum. 378, 125–136 (2017). Rundora, L., Makinde, O. D.: Analysis of unsteady MHD reactive flow of non-Newtonian fluid through a porous saturated medium with asymmetric boundary conditions. Iran. J. Sci. Technol. Trans. Mech. Eng. 40(3), 189–201 (2016). Makinde, O. D., Reddy, M. G.: MHD peristaltic slip ow of Casson uid and heat transfer in channel filled with a porous medium. Sci. Iran.26(4A), 2342–2355 (2019). Kumar, T. S., Kumar, B. R., Makinde, O. D., Kumar, A. G. V.: Magneto-convective heat transfer in micropolar nanofluid over a stretching sheet with non-unifrom heat source/sink. Defect Diffus. Forum. 387, 78–90 (2018). Eringen, A. C.: Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964). Mekheimer, K. S., Abo-Elkhair, R. E., S.Husseny, Z. -A., Ali, A. T.: Similarity solution for flow of a micro-polar fluid through a porous medium. Appl. Appl. Math. 6, 341–352 (2011). Raza, J., Rohni, A. M., Omar, Z.: A note on some solutions of micropolar fluid in a channel with permeable walls. Multidiscip. Model. Mater. Struct. 14, 91–101 (2017). Hussanan, A., Zuki, M., Ilyas, S., Razman, K., Tahar, M.: Heat and mass transfer in a micropolar fluid with Newtonian heating: an exact analysis. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2516-0. Sheikholeslami, M., Hatami, M., Ganji, D. D.: Micropolar fluid flow and heat transfer in a permeable channel using analytical method. J. Mol. Liq. 194, 30–36 (2014). Lukaszewicz, G.: Long time behavior of 2D micropolar fluid flows. Math. Comput. Model. 34, 487–509 (2001). Ravi, S., Prasad, R. S.: Interaction of pulsatile flow on the peristaltic motion of couple stress fluid through porous medium in a flexible channel. Eur. J. PURE Appl. Math. 3, 213–226 (2010). Pashaev, O., Tanoǧlu, G.: Vector shock soliton and the hirota bilinear method. Chaos, Solitons Fractals. 26, 95–105 (2005). Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973). Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448–479 (2010). Zhang, B. G., Li, S. Y., Liu, Z. R.: Homotopy perturbation method for modified Camassa-Holm and Degasperis-Procesi equations. Phys. Lett. A. 372, 1867–1872 (2008). Shi, Y., Li, X., Zhang, B. G.: Traveling wave solutions of two nonlinear wave equations by \(\phantom {\dot {i}\!}(G^{'}\setminus G)\) expansion method. Adv. Math. Phys. (2018). ID 8583418 8. https://doi.org/10.1155/2018/8583418. He, J., Abdou, M. A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos, Solitons Fractals. 34, 1421–1429 (2007). He, J. H., Wu, X. H.: Exp-function method and its application to nonlinear equations. Chaos, Solitons Fractals. 38, 903–910 (2008). Islam, R., Khan, K.: Traveling wave solutions of some nonlinear evolution equations. Alex. Eng. J. 54, 263–269 (2015). Iyiola, O. S., Folarin, S. B.: Approximate Analytical Study of Fingero-Imbibition phenomena of time-fractional type in double phase flow through porous media. Eur. J. PURE Appl. Math. 7, 210–229 (2014). Khan, N. A., Ara, A., Jamil, M.: Traveling waves solution of a micropolar fluid. Int. J. Nonlinear Sc. Num. Simul. 10, 1121–1125 (2009). Khan, N. A., Mahmood, A., Jamil, M., Khan, N. -U.: Traveling wave solutions for MHD aligned flow of a second grade fluid. Int. J. Chm. React. Engg. 8, A163 (2010). Khan, N. A., Ara, A., Jamil, M., Yildirim, A.: Traveling wave solutions for MHD aligned flow of a second grade fluid. A symmetry independent approach. J. King Saud Uni. Sc. 24, 63–67 (2011). Khan, N. A., Khan, H.: Traveling wave solutions for (3+ 1) dimensional equations arising in fluid mechanics. Nonlinear Eng. 3, 209–214 (2014). Khan, N. A., Khan, H., Ali, S. A.: Exact solutions for MHD flow of couple stress fluid with heat transfer. J. Egyptain Math. Soc. 24, 125–129 (2016). Zhao, Y., Chen, L., Zhang, X. R.: Traveling wave solutions to incompressible unsteady 2-D laminar flows with heat transfer boundary. Int. Commun. Heat Mass Transf. 75, 206–217 (2016). Kucaba-Pietal, A.: Microchannels flow modelling with the micropolar fluid theory. Tech. Sci. 52, 209–2014 (2004).