New stability result for a thermoelastic Bresse system with two infinite memories
Tóm tắt
In this paper we investigate a thermoelastic system where the oscillations are defined by the Bresse model and the heat conduction is given by Green and Naghdi theories. First, we show that the system is well-posed in the sens of semigroup. Then, based on the energy method we establish a general decay result for the solutions of the system. This result generalizes and improves the earlier work of Ghanam and Djebabla (Math Methods Appl Sci 41:3868–3884, 2018) for the case
$$l\ne 0$$
.
Tài liệu tham khảo
Afilal, M., Feng, B., Soufyane, A.: New decay rates for Cauchy problem of Timoshenko thermoelastic systems with past history: Cattaneo and Fourier law. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6579
Bresse, J.A.C.: Cours de Méchanique Appliquée. Mallet Bachelier, Paris (1859)
Djebabla, A., Tatar, N.: Exponential stabilization of the Timoshenko system by a thermal effect with an oscillating kernel. Math. Comput. Model. 54(1–2), 301–314 (2011)
Dridi, H., Feng, B., Zennir, K.: Stability of Timoshenko system coupled with thermal law of Gurtin–Pipkin affecting on shear force. Appl. Anal. (2021). https://doi.org/10.1080/00036811.2021.1883591
Enyi, C.D., Feng, B.: Stability Result for a New Viscoelastic–Thermoelastic Timoshenko System. Bull. Malays. Math. Soc. Ser. 2 (2020). https://doi.org/10.1007/s40840-020-01035-1
Fatori, L.H., Muñoz Rivera, J.E., Nunes Monteiro, R.: Energy decay to Timoshenko’s system with thermoelasticity of type III. Asymptot. Anal. 86, 227–247 (2014)
Fatori, L.H., Muñoz Rivera, J.E.: Rates of decay to weak thermoelastic Bresse system. IMA J. Appl. Math. 75, 881–904 (2010)
Feng, B.: Exponential stabilization of a Timoshenko system with thermo diffusion effects. Z. Angew. Math. Phys. 72(4) (2021). https://doi.org/10.1007/s00033-021-01570-2
Ghennam, K., Djebabla, A.: Energy decay result in a Timoshenko-type system of thermoelasticity of type III with weak damping. Math. Methods Appl. Sci. 41, 3868–3884 (2018)
Guesmia, A.: The effect of the heat conduction of types I and III on the decay rate of the Bresse system via the longitudinal displacement. Arab. J. Math. 8, 15–41 (2019)
Guesmia, A., Kafini, M.: Bresse system with infinite memories. Math. Methods Appl. Sci. 38(11) (2014). https://doi.org/10.1002/mma.3228
Guesmia, A., Messaoudi, S.A.: A general stability result in a Timoshenko system with infinite memory: a new approach. Math. Methods Appl. Sci. 37, 384–392 (2014)
Guesmia, A., Messaoudi, S.A.: On the control of solutions of a viscoelastic equation. Appl. Math. Comput. 206, 589–597 (2008)
Hao, J., Wang, F.: Energy decay in a Timoshenko-type system for thermoelasticity of type III with distributed delay and past history. Electron. J. Differ. Equ. 2018(75), 1–27 (2018)
Keddi, A., Apalara, T.A., Messaoudi, S.A.: Exponential and polynomial decay in a thermoelastic-Bresse system with second sound. Appl. Math. Optim. 77, 315–341 (2018)
Khochemane, H.E.: General stability result for a porous thermoelastic system with infinite history and microtemperatures effects. Math. Methods Appl. Sci., 1–20 (2021). https://doi.org/10.1002/mma.7872
Khochemane, H.E., Djebabla, A., Zitouni, S., Bouzettouta, L.: Well-posedness and general decay of a nonlinear damping porous-elastic system with infinite memory. J. Math. Phys. 61, 021505 (2020). https://doi.org/10.1063/1.5131031
Khochemane, H.E., Bouzettouta, L., Zitouni, S.: General decay of a nonlinear damping porous-elastic system with past history. Annali Dell’ Universita’ Di Ferrara 65(2), 249–275 (2019)
Liu, Z., Rao, B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Phys. 56, 630–644 (2005)
Messaoudi, S.A., Al-Gharabli, M.: A general decay result of a nonlinear system of wave equations with infinite memories. Appl. Math. Comput. 259, 540–551 (2015)
Messaoudi, S.A., Apalara, T.A.: General stability result in a memory type porous thermoelasticity system of type III. Arab. J. Math. Sci. 20(2), 213–232 (2014)
Muñoz Rivera, J.E., Fernández Sare, H.D.: Stability of Timoshenko systems with past history. J. Math. Anal. Appl. 339(1), 482–502 (2008)
Pamplona, P.X., Muñoz Rivera, J.E., Quintanilla, R.: On the decay of solutions for porous-elastic systems with history. J. Math. Anal. Appl. 379, 682–705 (2011)
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
Santos, M.L.: Bresse system in thermoelasticity of type III acting on shear force. J. Elast. 125(2). https://doi.org/10.1007/s10659-016-9576-3
Santos, M.L., Almeida Júnior, D.S.: On Timoshenko-type systems with type III thermoelasticity: asymptotic behavior. J. Math. Anal. Appl. 448, 650–671 (2017)