New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials

E. H. Doha1, W. M. Abd-Elhameed1,2, A. H. Bhrawy3,2
1Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
2Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
3Department of Mathematics, Faculty of Science, Beni-Suef University, Beni Suef, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abd-Elhameed, W.M.: Efficient spectral Legendre dual-Petrov–Galerkin algorithms for the direct solution of (2n+1)th-order linear differential equations. J. Egypt Math. Soc. 17, 189–211 (2009)

Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Applied Mathematical Series, vol. 55. National Bureau of Standards, New York (1970)

Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

Aslanov, A.: A general formula for the series solution of high-order linear and nonlinear boundary value problems. Math. Comput. Model. 55, 785–790 (2012)

Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithms for elliptic boundary value problems: a survey. Numer. Algorithms 56, 3467–3478 (2011)

Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, Mineola (2001)

Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)

Chandrasekaran, S., Ipsen, I.C.F.: On the sensitivity of solution components in linear systems of equations. SIAM J. Matrix Anal. Appl. 16(1), 93–112 (1995)

Coutsias, E.A., Hagstrom, T., Torres, D.: An efficient spectral method for ordinary differential equations with rational function. Math. Comput. 65, 611–635 (1996)

Doha, E.H.: An accurate solution of parabolic equations by expansion in ultraspherical polynomials. Comput. Math. Appl. 19(4), 75–88 (1990)

Doha, E.H.: The coefficients of differentiated expansions and derivatives of ultraspherical polynomials. Comput. Math. Appl. 21(2–3), 115–122 (1991)

Doha, E.H.: On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations. J. Comput. Appl. Math. 139, 275–298 (2002)

Doha, E.H.: On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. J. Phys. A Math. Gen. 37, 657–675 (2004)

Doha, E.H., Abd-Elhameed, W.M.: Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials. SIAM J. Sci. Comput. 24, 548–571 (2002)

Doha, E.H., Abd-Elhameed, W.M.: Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method. J. Comput. Appl. Math. 181, 24–45 (2005)

Doha, E.H., Abd-Elhameed, W.M.: Efficient spectral ultraspherical-dual-Petrov–Galerkin algorithms for the direct solution of (2n+1)th-order linear differential equations. Math. Comput. Simul. 79, 3221–3242 (2009)

Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Appl. Numer. Math. 58, 1224–1244 (2008)

Doha, E.H., Abd-Elhameed, W.M., Bhrawy, A.H.: Efficient spectral ultraspherical-Galerkin algorithms for the direct solution of 2 $$n$$ th-order linear differential equations. Appl. Math. Model 33, 1982–1996 (2009)

Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: Efficient spectral-Petrov–Galerkin methods for the integrated forms of third- and fifth-order elliptic differential equations using general parameters generalized Jacobi polynomials. Appl. Math. Comput. 218, 7727–7740 (2012)

Funaro, D.: Polynomial Approximation of Differential Equations. Lecturer Notes in Physics. Springer, Heidelberg (1992)

Gheorghiu, C.I.: Spectral Methods for Differential Problems. “T. Popoviciu” Institute of Numerical Analysis, Cluj-Napoca (2007)

Gheorghiu, C.I., Dragomirescu, F.-I.: Spectral methods in linear stability. Applications to thermal convection with variable gravity field. Appl. Numer. Math. 59, 1290–1302 (2009)

Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)

Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia (2011)

Guo, B.-Y., Shen, J., Wang, L.-L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)

Guo, B.-Y., Shen, J., Wang, L.-L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59(5), 1011–1028 (2009)

Heinrichs, W.: Spectral methods with sparse matrices. Numer. Math. 56, 25–41 (1989)

Heinrichs, W.: Algebraic spectral multigrid methods. Comput. Methods Appl. Mech. Eng. 80, 281–286 (1990)

Noor, M.A., Mohyud-Din, S.T.: Homotopy perturbation method for solving sixth-order boundary value problems. Comput. Math. Appl. 55, 2953–2972 (2008)

Noor, M.A., Noor, K.I., Mohyud-Din, S.T.: Variational iteration method for solving sixth-order boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2571–2580 (2009)

Schatzman, M., Taylor, J.: Numerical Analysis: A Mathematical Introduction (translated). Clarendon Press, Oxford (2002)

Siddiqi, S.S., Akram, G.: Solution of 10th-order boundary value problems using non-polynomial spline technique. Appl. Math. Comput. 190, 641–651 (2007)

Siddiqi, S.S., Twizell, E.H.: Spline solutions of linear tenth-order boundary value problems. Int. J. Comput. Math. 68, 345–362 (1998)

Szegö, G.: Orthogonal Polynomials. Am. Math. Soc. Colloq. Pub., vol. 23 (1985)

Wang, W., Zhao, Y.B., Wei, G.W.: A note on the numerical solution of high-order differential equations. J. Comput. Appl. Math. 159, 387–398 (2003)