New reductions of the Kadomtsev–Petviashvili and two-dimensional Toda lattice hierarchies via symmetry constraints

Journal of Mathematical Physics - Tập 33 Số 11 - Trang 3676-3686 - 1992
B. G. Konopelchenko1, Walter Strampp2
1Service de Physique Théorique, C.E.N.-Saclay, 91191 Gif-sur-Yvette, France
2Fachbereich 17-Mathematik/Informatik, GH-Universität Kassel, Holländische Str. 36, 3500 Kassel, Germany

Tóm tắt

New types of reductions of the Kadomtsev–Petviashvili (KP) hierarchy and the two-dimensional Toda lattice (2DTL) hierarchy are considered on the basis of Sato’s approach. Within this approach these hierarchies are represented by infinite sets of equations for potentials u1,u2,u3,..., of pseudodifferential operators and their eigenfunctions ψ and adjoint eigenfunctions ψ*. The KP and the 2DTL hierarchies are studied under constraints of the following type: ∑n=1N αnSn(u1,u2,u3,...)=Ωx, where Sn are symmetries for these hierarchies, αn are arbitrary constants, and Ω is an arbitrary linear functional of the quantity ψ(λ)ψ*(μ). It is shown that for the KP hierarchy these constraints give rise to hierarchies of 1+1-dimensional commuting flows for the variables u2,u3,...,uN,ψ,ψ*. Many known systems and several new ones are among them. Symmetry reductions for the 2DTL hierarchy give rise both to finite-dimensional dynamical systems and 1+1-dimensional discrete systems. Some few results for the modified KP hierarchy are also presented.

Từ khóa


Tài liệu tham khảo

1983, Publ. RIMS, Kyoto Univ., 19, 943, 10.2977/prims/1195182017

1988, Prog. Theor. Phys. Suppl., 94, 219

1981, Adv. Stud. Pure Math., 4, 1

1991, J. Math. Phys., 32, 506, 10.1063/1.529387

1988, J. Phys. A: Math. Gen., 21, L743, 10.1088/0305-4470/21/15/001

1986, Stud. Appl. Math., 75, 179, 10.1002/sapm1986752179

1988, Commun. Math. Phys., 115, 375, 10.1007/BF01218017

1988, Commun. Math. Phys., 116, 449, 10.1007/BF01229203

1988, Inv. Prob., 4, 75

1986, Lett. Math. Phys., 12, 171, 10.1007/BF00416506

1988, Naukova Dumka, 1, 126

1990, J. Math. Phys., 31, 1426, 10.1063/1.528732

1991, Inverse Problems, 7

1991, Phys. Lett. A, 157, 17, 10.1016/0375-9601(91)90402-T

1991, Phys. Lett. A, 157, 22, 10.1016/0375-9601(91)90403-U

1991, Inverse Problems, 7, L37, 10.1088/0266-5611/7/6/001

1988, Sov. J. Part. Nucl., 19, 252

1974, Stud. Appl. Math., 53, 249, 10.1002/sapm1974534249

1976, Prog. Theor. Phys., 56, 1719, 10.1143/PTP.56.1719

1986, Phys. Lett. A, 118, 22, 10.1016/0375-9601(86)90527-X

1987, Commun. Math. Phys., 112, 639, 10.1007/BF01225378

1989, Commun. Math. Phys., 120, 451, 10.1007/BF01225507

1982, Phys. Lett. A, 89, 332, 10.1016/0375-9601(82)90186-4

1983, Lett. Math. Phys., 7, 129, 10.1007/BF00419931

1987, Phys. Rev. Lett., 52, 2063

1991, J. Phys. A, 24, L1065, 10.1088/0305-4470/24/18/002

1990, Prog. Theor. Phys., 83, 1108, 10.1143/PTP.83.1108

1988, Commun. Math. Phys., 115, 1, 10.1007/BF01238850

1992, J. Phys. A, 25, 419, 10.1088/0305-4470/25/2/022