New insights into the structural development and shortening of the southern Jasmund Glacitectonic Complex (Rügen, Germany) based on balanced cross sections

International Journal of Earth Sciences - Tập 111 - Trang 1697-1715 - 2022
Anna Gehrmann1, Stig A. Schack Pedersen2, Martin Meschede1
1Institute for Geography and Geology, University of Greifswald, Greifswald, Germany
2Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark

Tóm tắt

Late Pleistocene glacitectonism at the southern Scandinavian Ice Sheet margin caused folding and thrusting of Upper Cretaceous chalk layers and Pleistocene glacial deposits in parts of the southwestern Baltic Sea area in Europe. Beside Møns Klint (SE Denmark), the Jasmund Glacitectonic Complex (JGC) on Rügen Island (NE Germany) is a similar striking example of glacitectonic deformation creating large composite ridges. In spite of a long research history and new results from modern datasets, the structural development of the JGC is still poorly understood, especially the detailed evolution of the southern JGC and its relationship to the northern JGC remain enigmatic. In this contribution, we demonstrate how the understanding of the JGC benefits from the application of established structural geological methods comprehending the formation of fold-and-thrust belts. The methods include cross-section balancing of the eastern coast (southern JGC) and quantification of the amount of folding and faulting. The proposed geometric model shows the current fold-and-thrust stack of glacially deformed sedimentary strata ca. 5720 m in length evolved by shortening from the original length (11,230 m) by 5510 m (49.1%). We present a spatial and temporal development of fault-related folding with a transition from detachment folds through fault-propagation folds to fault-bend folds. Together with morphological information from a digital elevation model, the thrust faults mapped in the cliff section are mainly inclined towards the S to SW and imply that a local glacier push occurred from the south. These results highlight the complexity and individual architecture of the JGC when compared to other Pleistocene and modern glacitectonic complexes. Resolving its structural development provides new insight into the deformation history and shortening of this spectacular glacitectonic complex lying in the southwestern Baltic Sea region.

Tài liệu tham khảo

Aber JS, Croot DG, Fenton MM (1989) Glaciotectonic landforms and structures. Kluwer, Dordrecht Benediktsson ÍÖ, Schomacker A, Lokrantz H, Ingólfsson Ó (2010) The 1890 surge end moraine at Eyjabakkajökull, Iceland: a re-assessment of a classic glaciotectonic locality. Quat Sci Rev 29:484–506. https://doi.org/10.1016/j.quascirev.2009.10.004 Bennett MR (2001) The morphology, structural evolution and significance of push moraines. Earth Sci Rev 53:197–236. https://doi.org/10.1016/S0012-8252(00)00039-8 Berthelsen A (1978) The methodology of kineto-stratigraphy as applied to glacial geology. Bull Geol Soc Den 27:25–38 Boulton GS, van der Meer JJM, Beets DJ, Hart JK, Ruegg GHJ (1999) The sedimentary and structural evolution of a recent push moraine complex: Holmströmbreen, Spitsbergen. Quatern Sci Rev 18:339–371. https://doi.org/10.1016/S1571-0866(04)80103-9 Boyer SE, Elliott D (1982) Thrust systems. Am Asso Petrol Geol Bull 66:1196–1230 Brandes C, Tanner DC (2014) Fault-related folding: a review of kinematic models and their application. Earth Sci Rev 138:352–370. https://doi.org/10.1016/j.earscirev.2014.06.008 Credner R (1893) Rügen. Eine Inselstudie. Forschungen Zur Deutschen Landes- Und Volkskunde 7:373–494 Croot DG (1987) Glacio-tectonic structures: a mesoscale model of thin-skinned thrust sheets? J Struct Geol 9:797–808. https://doi.org/10.1016/0191-8141(87)90081-2 Croot DG (1988) Morphological, structural and mechanical analysis of neoglacial ice-pushed ridges in Iceland. In: Croot DG (ed) Glaciotectonics: forms and processes. Balkema, Rotterdam, pp 33–47 Dahlstrom CDA (1969) Balanced cross sections. Can J Earth Sci 6:743–757. https://doi.org/10.1139/e69-069 Dixon JM, Liu S (1992) Centrifuge modelling of the propagation of thrust faults. In: McClay KR (ed) Thrust tectonics. Chapman and Hall, London, pp 53–70 Egan SS, Buddin TS, Kane SJ, Williams GD (1997) Three-dimensional modelling and visualisation in structural geology: new techniques for the restoration and balancing of volumes. In: Proceedings of the 1996 Geoscience Information Group Conference on Geological Visualisation, Electronic Geology 1(7):67–82 Gehrmann A, Harding C (2018) Geomorphological mapping and spatial analyses of an upper weichselian glacitectonic complex based on LiDAR Data, Jasmund Peninsula (NE Rügen) Germany. Geosci 8(6):208. https://doi.org/10.3390/geosciences8060208 Gehrmann A, Hüneke H, Meschede M, Phillips ER (2017) 3D microstructural architecture of deformed glacigenic sediments associated with large-scale glacitectonism, Jasmund Peninsula (NE Rügen) Germany. J Quat Sci 32(2):213–230. https://doi.org/10.1002/jqs.2843 Gehrmann A, Meschede M, Hüneke H, Pedersen SAS (2019) Sea cliff at Kieler Ufer (Pleistocene stripes 11–16)—large-scale architecture and kinematics of the Jasmund Glacitectonic Complex. DEUQUA Spec Publ 2:19–27. https://doi.org/10.5194/deuquasp-2-19-2019 Gibb A (2015) Sedimentarchitektur und Fazies der interstadialen Sedimente am Stubbenhörn–Abbild glazitektonischer Prozesse (Jasmund, Rügen). Bachelor thesis, University of Greifswald Gripp K (1929) Glaziologische und geologische Ergebnisse der Hamburgischen Spitzbergen-Expedition. Abhandlungen Des Naturwissenschaftlichen Vereins Hamburg 22:147–247 Gripp K (1947) Jasmund und Möen, eine glacialmorphologische Untersuchung. Zeitschrift Zur Erdkunde 1:175–182 Groth K (2003) Zur glazitektonischen Entwicklung der Stauchmoräne Jasmund/Rügen Schriftenreihe Des Landesamtes Für Umwelt. Naturschutz Und Geologie Mecklenburg-Vorpommern 3:39–49 Hoth K, Rusbült J, Zagora K, Beer H, Hartmann O (1993) Die tiefen Bohrungen im Zentralabschnitt der mitteleuropäischen Senke—Dokumentation für den Zeitabschnitt 1962–1990. Schriftenreihe für Geowissenschaften 2 Houmark-Nielsen M (1987) Pleistocene stratigraphy and glacial history of the central part of Denmark. Bull Geol Soc Denmark. https://doi.org/10.37570/bgsd-1988-36-01 Houmark-Nielsen M (2007) Extent and age of Middle and Late Pleistocene glaciations and periglacial episodes in Southern Jylland, Denmark. Bull Geol Soc Denmark 55:9–35. https://doi.org/10.37570/bgsd-2007-55-02 Ingolfsson Ó, Benediktsson ÍÖ, Schomacker A, Kjær KH, Brynjólfsson S, Jónsson SA, Korsgaard NJ, Johnson MD (2016) Glacial geological studies of surge-type glaciers in Iceland—research status and future challenges. Earth Sci Rev 152:37–69. https://doi.org/10.1016/j.earscirev.2015.11.008 Jaekel O (1917) Neue Beiträge zur Tektonik des Rügener Steilufers. Zeitschrift Der Deutschen Geologischen Gesellschaft 69:81–176 Janke W, Niedermeyer R-O (2011) Geologische Entwicklung im Pleistozän. In: Niedermeyer R-O, Lampe R, Janke W, Schwarzer K, Duphorn K, Kliewe H, Werner F (eds) Die deutsche Ostseeküste. Gebr. Borntraeger Verlagsbuchhandlung, Stuttgart, pp 32–51 Johnstrup F (1874) Ueber die Lagerungsverhältnisse und die Hebungsphänomene in den Kreidefelsen auf Möen und Rügen. Zeitschrift Der Deutschen Geologischen Gesellschaft 26:533–585 Kane SJ, Williams GD, Buddin TS, Egan SS, Hodgetts D (1997) Flexural-slip based restoration in 3D, a new approach. In: AAPG Annual Convention Official Program. A58 Katzung G, Müller U (2004) Quartär. In: Katzung G (ed) Geologie von Mecklenburg–Vorpommern. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 221–225 Keilhack K (1912) Die Lagerungsverhältnisse des Diluviums in der Steilküste von Jasmund auf Rügen. Jahrbuch Der Preußischen Geologischen Landesanstalt 33:114–158 Kenzler M, Obst K, Hüneke H, Schütze K (2010) Glazitektonische Deformation der kretazischen und pleistozänen Sedimente an der Steilküste von Jasmund nördlich des Königsstuhls (Rügen). Brandenburgische Geowissenschaftliche Beiträge 17:107–122 Kenzler M, Krauß N, Hüneke H (2022) Testing a proposed new chronology for the Jasmund Glacitectonic Complex (SW Baltic Sea): no indication of incipient deformation during MIS 3. Quat Geochronol 70:101299. https://doi.org/10.1016/j.quageo.2022.101299 Litt T, Behre K-E, Meyer K-D (2007) Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. E&G Quat Sci J 56:7–65. https://doi.org/10.23689/fidgeo-1278 Lohrberg A, Krastel S, Unverricht D, Schwarzer K (2021) The Heligoland Glacitectonic Complex in the southeastern North Sea: indicators of a pre- or early-Elsterian ice margin. Boreas. https://doi.org/10.1111/bor.12551 Ludwig AO (1954/55) Eistektonik und echte Tektonik in Ost-Rügen (Jasmund). Wissenschaftliche Zeitschrift der Ernst-Moritz-Arndt-Universität Greifswald, Mathematisch-naturwissenschaftliche Reihe 4(3/4):251–288 Ludwig AO (2005) Zur Interpretation des Kliffanschnitts östlich Glowe/Insel Rügen (Ostsee). Z Geol Wiss 33:263–272 Ludwig AO (2006) Cyprinenton und I1-Folge im Pleistozän von Nordost-Rügen und der Insel Hiddensee (südwestliche Ostsee). Z Geol Wiss 34:349–377 Ludwig AO (2011) Zwei markante Stauchmoränen: Peski/Belorussland und Jasmund, Ostseeinsel Rügen/Nordostdeutschland – Gemeinsame Merkmale und Unterschiede. E&G Quat Sci J 60(4):464–487. https://doi.org/10.23689/fidgeo-1757 Mehlhorn P, Winkler L, Grabbe F-C, Kenzler M, Gehrmann A, Hüneke H, Rother H (2019) Coastal cliff at Lenzer Bach on Jasmund Peninsula, Rügen Island (Pleistocene Stripe 4): reconstructed history of glacitectonic deformation based on fold geometry and microstructural mapping. DEUQUA Spec Publ 2:35–41. https://doi.org/10.5194/deuquasp-2-35-2019 Mercier E, Outtani F, Frizon de LaMotte D (1997) Late-stage evolution of fault-propagation folds: principles and examples. J Struct Geol 19:185–193. https://doi.org/10.1016/S0191-8141(96)00081-8 Midland Valley Exploration Ltd (2017) Move2017.1 suite, Glasgow Mitra S (1990) Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. Am Asso Petrol Geol Bull 74:921–945 Müller U (2004) Jung-Pleistozän–Eem–Warmzeit bis Weichsel-Hochglazial. In: Katzung G (ed) Geologie von Mecklenburg–Vorpommern. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 234–242 Müller U, Obst K (2006) Lithostratigraphie und Lagerungsverhältnisse der pleistozänen Schichten im Gebiet von Lohme (Jasmund/Rügen). Z Geol Wiss 34:39–54 Mueller K, Suppe J (1997) Growth of Wheeler Ridge anticline, California: geomorphic evidence for fault-bend folding behaviour during earthquakes. J Struct Geol 19:383–396. https://doi.org/10.1016/S0191-8141(96)00112-5 Noble TE, Dixon JM (2011) Structural evolution of fold-thrust structures in analog models deformed in a large geotechnical centrifuge. J Struct Geol 33:62–77. https://doi.org/10.1016/j.jsg.2010.12.007 Panzig W-A (1995) Zum Pleistozän Nordost-Rügens. In: Katzung G, Hüneke H, Obst K (eds) Geologie des südlichen Ostseeraumes – Umwelt und Untergrund. Terra Nostra, Schriften der Alfred-Wegener-Stiftung 6:177–200 Pedersen SAS (2000) Superimposed deformation in glaciotectonics. Bull Geol Soc Den 46:125–144 Pedersen SAS (2005) Structural analysis of the Rubjerg Knude glaciotectonic complex, Vendsyssel, northern Denmark. Geol Surv Denmark Greenl Bull. https://doi.org/10.34194/geusb.v8.4848 Pedersen SAS (2014) Architecture of glaciotectonic complexes. Geosciences 4:269–296. https://doi.org/10.3390/geosciences4040269 Pedersen SAS, Boldreel LO (2017) Glaciotectonic deformations in the Jammerbugt and glaciodynamic development in the eastern North Sea. J Quat Sci 32(2):183–195. https://doi.org/10.1002/jqs.2887 Pedersen SAS, Gravesen P (2009) Structural development of Maglevandsfald: a key to understanding the glaciotectonic architecture of Møns Klint. Geol Surv Denmark Greenl Bull 17:29–32. https://doi.org/10.34194/geusb.v17.5007 Pedersen SAS, Møller I (2004) Prediction and risk evaluation of chalk cliff collapse: the PROTECT project. Geol Surv Denmark Greenl Bull 4:89–92. https://doi.org/10.34194/geusb.v4.4793 Phillips ER (2018) Glacitectonics. Past Glacial Environments. In: Menzies J, van der Meer JJM (eds) Past glacial environments. Elsevier, pp 467–502. https://doi.org/10.1016/B978-0-08-100524-8.00014-2 Plonka N, Kenzler M, Hüneke H (2021) Syn-kinematic sedimentation between ice margin-parallel thrust-bounded ridges of the Glacitectonic Complex of Jasmund (Rügen Island, SW Baltic Sea, Weichselian). Quat Int. https://doi.org/10.1016/j.quaint.2021.02.040 Rinterknecht V, Börner A, Bourlès D, Braucher R (2014) Cosmogenic 10Be dating of ice sheet marginal belts in Mecklenburg–Vorpommern, Western Pomerania (northeast Germany). Quat Geochronol 19:42–51. https://doi.org/10.1016/j.quageo.2013.05.003 Slater G (1927) The structure of disturbed chalk and diluvium on the east coast of the Isle of Rügen (Jasmund District), Germany. In: Report of the British Association, 320–321 Steinich G (1972) Endogene Tektonik in den Unter-Maastricht-Vorkommen auf Jasmund (Rügen). Geologie 20(Supplement 71/72):1–207 Steinich G (1992) Die stratigraphische Einordnung der Rügen-Warmzeit. Z Geol Wiss 20:125–154 Suppe J (1985) Principles of structural geology. Prentice-Hall, Englewood Cliffs, New Jersey van der Wateren FM (2003) Ice-marginal terrestrial landsystems: southern Scandinavian ice sheet margin. In: Evans DJA (ed) Glacial landsystems. Arnold, London, pp 166–203 Vaughan-Hirsch DP, Phillips ER (2017) Mid-Pleistocene thin-skinned glaciotectonic thrusting of the Aberdeen Ground Formation, Central Graben region, central North Sea. J Quat Sci 32(2):196–212. https://doi.org/10.1002/jqs.2836 von Bülow K (1955) Stapelmoränen und Untergrund im norddeutschen Jungdiluvium. Geologie 4:3–14 Winsemann J, Koopmann H, Tanner DC, Lutz R, Lang J, Brandes C, Gaedicke C (2020) Seismic interpretation and structural restoration of the Heligoland glaciotectonic thrust-fault complex: implications for multiple deformation during (pre-) Elsterian to Warthian ice advances into the southern North Sea Basin. Quatern Sci Rev 227:106068. https://doi.org/10.1016/j.quascirev.2019.106068 Ziesch J, Tanner DC, Krawczyk M (2014) Strain associated with the fault-parallel flow algorithm during kinematic fault displacement. Math Geosci 46:59–73. https://doi.org/10.1007/s11004-013-9464-3