New insights into symptoms and neurocircuit function of anorexia nervosa

Nature Reviews Neuroscience - Tập 10 Số 8 - Trang 573-584 - 2009
Walter H. Kaye1, Julie L. Fudge2, Martin P. Paulus3
1Eating Disorder Treatment & Research Program, Department of Psychiatry, University of California, San Diego, La Jolla Village Professional Center, 8950 Villa La Jolla Drive, Suite C-207, La Jolla, California 92037, USA.
2Psychiatry & Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, USA
3Department of Psychiatry, Laboratory of Biological Dynamics and Theoretical Medicine, University of California San Diego, La Jolla, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Association, Washington, DC 1994).

Lilenfeld, L. R. et al. A controlled family study of anorexia nervosa and bulimia nervosa: psychiatric disorders in first-degree relatives and effects of proband comorbidity. Arch. Gen. Psychiatry 55, 603–610 (1998).

Walters, E. E. & Kendler, K. S. Anorexia nervosa and anorexic-like syndromes in a population-based female twin sample. Am. J. Psychiatry 152, 64–71 (1995).

Berrettini, W. Genetics of psychiatric disease. Annu. Rev. Med. 51, 465–479 (2000).

Bulik, C. et al. Prevalence, heritability and prospective risk factors for anorexia nervosa. Arch. Gen. Psychiatry 63, 305–312 (2006).

Wade, T., Martin, N. G. & Tiggemann, M. Genetic and environmental risk factors for the weight and shape concerns characteristic of bulimia nervosa. Psychol. Med. 28, 761–771 (1998).

Rutherford, J., McGuffin, P., Katz, R. J. & Murray, R. M. Genetic influences on eating attitudes in a normal female twin population. Psychol. Med. 23, 425–436.

Bulik, C., Slof-Op't Landt M, van Furth, E. & Sullivan, P. The genetics of anorexia nervosa. Ann. Rev. Nutr. 27, 263–275 (2007).

Strober, M., Freeman, R., Lampert, C., Diamond, J. & Kaye, W. Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am. J. Psychiatry 157, 393–401.

Lilenfeld, L., Wonderlich, S., Riso, L. P., Crosby, R. & Mitchell, J. Eating disorders and personality: a methodological and empirical review. Clin. Psychol. Rev. 26, 299–320 (2006). This paper, which reviews the relationship between personality and eating disorders, shows that negative emotionality, perfectionism, drive for thinness, poor interoceptive awareness, ineffectiveness and obsessive-compulsive personality traits are probable predisposing factors for AN and BN.

Stice, E. Risk and maintenance factors for eating pathology: a meta-analytic review. Psychopharm. Bull. 128, 825–848 (2002).

Anderluh, M. B., Tchanturia, K., Rabe-Hesketh, S. & Treasure, J. Childhood obsessive-compulsive personalitiy traits in adult women with eating disorders: defining a broader eating disorder phenotype. Am. J. Psychiatry. 160, 242–247 (2003). One of the first studies to find that childhood traits reflecting obsessive-compulsive personality seem to be important risk factors for the development of eating disorders. Such traits may represent markers of a broader phenotype for a specific subgroup of patients with AN.

Bulik, C. et al. Genetic epidemiology, endophenotypes, and eating disorder classification. Int. J. Eat. Disord. 40, S52–S60 (2007).

Pollice, C., Kaye, W. H., Greeno, C. G. & Weltzin, T. E. Relationship of depression, anxiety, and obsessionality to state of illness in anorexia nervosa. Int. J. Eat. Disord. 21, 367–376 (1997).

Katzman, D. K. et al. Cerebral gray matter and white matter volume deficits in adolescent girls with anorexia nervosa. J. Pediat. 129, 794–803 (1996).

Kaye, W., Wagner, A., Frank, G., U. F. Review of brain imaging in anorexia and bulimia nervosa in Annual Review of Eating Disorders, Part 2 (eds Wonderlich, S., Mitchell, J., De Zwann, M. & Steiger, H.) 113–130 (Radcliffe Publishing Ltd, Abingdon UK, 2006).

Boyar, R. K. et al. Anorexia nervosa. Immaturity of the 24-hour luteinizing hormone secretory pattern. N. Engl. J. Med. 291, 861–865 (1974).

Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

Inui, A. Eating behavior in anorexia nervosa—an excess of both orexigenic and anorexigenic signalling? Mol. Psychiatry. 6, 620–624 (2001).

Jimerson, D., Wolfe, B. Psychobiology of eating disorders in Annual Review of Eating Disorders, Part 2 (eds Wonderlich, S., Mitchell, J., De Zwann, M. & Steiger, H.) 1–15 (Radcliffe Publishing Ltd, Abingdon UK, 2006).

Kaye, W. H. et al. Elevated cerebrospinal fluid levels of immunoreactive corticotropin-releasing hormone in anorexia nervosa: relation to state of nutrition, adrenal function, and intensity of depression. J. Clin. Endocrinol. Metab. 64, 203–208 (1987).

Godart, N. et al. Comorbidity studies of eating disorders and mood disorders. Critical review of the literature. J. Affect. Disord. 97, 37–49 (2007).

Kaye, W. et al. Comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am. J. Psychiatry 161, 2215–2221 (2004).

Wagner, A. et al. Personality traits after recovery from eating disorders: do subtypes differ? Int. J. Eat. Disord. 39, 276–284 (2006).

Steinhausen, H. C. The outcome of anorexia nervosa in the 20th century. Am. J. Psychiatry 159, 1284–1293 (2002).

Strober, M., Freeman, R. & Morrell, W. The long-term course of severe anorexia nervosa in adolescents: survival analysis of recovery, relapse, and outcome predictors over 10–15 years in a prospective study. Int. J. Eat. Disord. 22, 339–360 (1997).

Casper, R. C. Personality features of women with good outcome from restricting anorexia nervosa. Psychosom. Med. 52, 156–170 (1990).

Srinivasagam, N. M. et al. Persistent perfectionism, symmetry, and exactness after long-term recovery from anorexia nervosa. Am. J. Psychiatry 152, 1630–1634 (1995).

Phillips, M., Drevets, W. R. & Rauch, S. L. Neurobiology of emotion perception II: implications for major psychiatric disorders Biol. Psych. 54, 515–528 (2003).

Phillips, M., Drevets, W. R., Rauch S. L. & Lane, R. Neurobiology of emotion perception I: The neural basis of normal emotion perception Biol. Psych. 54, 504–514 (2003). References 29 and 30 provide an outstanding synthesis of neural processes underlying emotional perception, as well as how distinct patterns of structural and functional abnormalities in neural systems important for emotion processing are associated with specific symptoms of schizophrenia and bipolar and major depressive disorder.

Gordon, I., Lask, B., Bryant-Waugh, R., Christie, D. & Timimi, S. Childhood-onset anorexia nervosa: towards identifying a biological substrate. Int. J. Eat. Disord. 22, 159–165 (1997).

Rastam, M. et al. Regional cerebral blood flow in weight-restored anorexia nervosa: a preliminary study. Dev. Med. Child. Neurol. 43, 239–242 (2001).

Uher, R. et al. Recovery and chronicity in anorexia nervosa: brain activity associated with differential outcomes. Biol. Psychiatry 54, 934–942 (2003). One of the first neuroimaging studies to identify neural correlates of food stimuli that underlie trait and state characteristics of AN.

Drevets, W. R. et al. Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl. Med. Biol. 34, 865–877 (2007).

Lanzenberger, R. et al. Reduced serotonin-1A receptor binding in social anxiety disorder. Biol. Psychiatry 61, 1081–1089 (2007).

Neumeister, A. et al. Reduced serotinin type 1A receptor binding in panic disorder. J. Neurosci. 24, 589–591 (2004).

Tiihonen, J. et al. Brain serotonin 1A receptor binding in bulimia nervosa. Biol. Psychiatry 55, 871–873 (2004).

Galusca, B. et al. Organic background of restrictive-type anorexia nervosa suggested by increased serotonin1A receptor binding in right frontotemporal cortex of both lean and recovered patients: [18F]MPPF PET scan study. Biol. Psychiatry 64, 1009–1013 (2008).

Bailer, U. F. et al. Exaggerated 5-HT1A but normal 5-HT2A receptor activity in individuals ill with anorexia nervosa. Biol. Psychiatry 61, 1090–1099 (2007).

Bailer, U. F. et al. Altered brain serotonin 5-HT1A receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [Carbonyl11C]WAY-100635. Arch. Gen. Psychiatry 62, 1032–1041 (2005).

Simansky, K. J. Serotonergic control of the organization of feeding and satiety. Behav. Brain Res. 73, 37–42 (1996).

Soubrie, P. Reconciling the role of central serotonin neurons in human and animal behavior. Beh. Brain Sci. 9, 319–364 (1986).

Fairbanks, L., Melega, W., Jorgensen, M., Kaplan, J. & McGuire, M. Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vermet monkeys. Neuropsychopharmacology 24, 370–378 (2001).

Lesch, K., Merschdorf, U. Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behav. Sci. Law 185, 581–604 (2000).

Mann, J. J. Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21, S99–S105 (1999).

Brewerton, T. D., Brandt, H. A., Lessem, M. D., Murphy, D. L., Jimerson, D. C. Serotonin in eating disorders in Serotonin in Major Psychiatric Disorders (Progress in Psychiatry). (eds Coccaro, E. F. & Murphy, D. L.) 155–184 (American Psychiatric Press, Washington DC, 1990).

Kaye, W. H., Frank, G., Bailer, U. F. & Henry, S. Neurobiology of anorexia nervosa: clinical implications of alterations of the function of serotonin and other neuronal systems. Int. J. Eat. Disord. 37, S15–S19 (2005).

Stanley, M., Traskman-Bendz, L. & Dorovini-Zis, K. Correlations between aminergic metabolites simultaneously obtained from human CSF and brain. Life Sci. 37, 1279–1286 (1985).

Frank, G. K. et al. Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biol. Psychiatry 52, 896–906 (2002).

Bailer, U. F. et al. Altered 5-HT2A receptor binding after recovery from bulimia-type anorexia nervosa: relationships to harm avoidance and drive for thinness. Neuropsychopharmacology 29, 1143–1155 (2004).

Audenaert, K. et al. Decreased 5-HT2a receptor binding in patients with anorexia nervosa. J. Nucl. Med. 44, 163–169 (2003).

Frank, G. K. et al. Altered response to meta-chlorophenylpiperazine in anorexia nervosa: support for a persistent alteration of serotonin activity after short-term weight restoration. Int. J. Eat. Disord. 30, 57–68 (2001).

Kaye, W. H. et al. Anxiolytic effects of acute tryptophan depletion in anorexia nervosa. Int. J. Eat. Disord. 33, 257–267 (2003).

Cloninger, C. R., Przybeck, T. R., Svrakic, D. M., Wetzel, R. D. in The temperament and character inventory (TCI): a guide to its development and use. (Center for Psychobiology of Personality, Washington University, St Louis, Missouri, USA, 1994).

File, S. E., Kenny, P. J. & Cheeta, S. The role of the dorsal hippocampal serotonergic and cholinergic systems in the modulation of anxiety. Pharmacol. Biochem. Behav. 66, 65–72 (2000).

Tauscher, J. et al. Inverse relationship between serotonin 5-HT1A receptor binding and anxiety: a [11C]WAY-100635 PET investigation in healthy volunteers. Am. J. Psychiatry 158, 1326–1328 (2001).

Weisstaub, N. et al. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313, 536–540 (2006).

Moresco, F. M. et al. In vivo serotonin 5HT2A receptor binding and personality traits in healthy subjects: A positron emission tomography study. NeuroImage 17, 1470–1478 (2002).

Amargos-Bosch, M. et al. Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb. Cortex 14, 281–299 (2004).

Varnas, K., Halldin, C. & Hall, H. Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum. Brain Mapp. 22, 246–260 (2004).

Santana, N., Bortolozzi, A., Serrats, J., Mengod, G. & Artigas, F. Expression of serotoinin1A and serotonin2A receptor in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb. Cortex. 14, 1100–1109 (2004).

Carli, M., Baviera, M., Invernizzi, R. & Balducci, C. Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats Neuropsychopharmacology 31, 757–767 (2006).

Winstanley, C. A. et al. Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats. Psypchopharmacology (Berl.) 167, 304–314 (2003).

Krebs-Thomson, K. & Geyer, M. A. Evidence for a functional interaction between 5-HT1A and 5-HT2A receptors in rats. Psychopharmacology (Berl.) 140, 69–74 (1998).

Strober, M. Family-genetic perspectives on anorexia nervosa and bulimia nervosa. in Eating Disorders and Obesity - A Comprehensive Handbook (eds Brownell, K. & Fairburn, C.) 212–218 (The Guilford Press, New York,1995).

Vitousek, K. & Manke, F. Personality variables and disorders in anorexia nervosa and bulimia nervosa. J. Abnorm. Psychol. 103, 137–147 (1994).

Fernstrom, J. D. & Wurtman, R. J. Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178, 414–416 (1972).

Kaye, W. H., Gwirtsman, H. E., George, D. T. & Ebert, M. H. Altered serotonin activity in anorexia nervosa after long-term weight restoration. Does elevated cerebrospinal fluid 5-hydroxyindoleacetic acid level correlate with rigid and obsessive behavior? Arch. Gen. Psychiatry 48, 556–562 (1991).

Simansky, K. J. et al. A 5-HT2C agonist elicits hyperactivity and oral dyskinesia with hypophagia in rabbits. Physiol. Behav. 82, 97–107 (2004).

Young, S. N. & Gauthier, S. Effect of tryptophan administration on tryptophan, 5- hydroxyindoleacetic acid and indoleacetic acid in human lumbar and cisternal cerebrospinal fluid. J. Neurol. Neurosurg. Psychiatry 44, 323–327 (1981).

Anderson, I. M., Parry-Billings, M., Newsholme, E. A., Fairburn, C. G. & Cowen, P. J. Dieting reduces plasma tryptophan and alters brain 5-HT function in women. Psychol. Med. 20, 785–791 (1990).

Schweiger, U., Warnhoff, M., Pahl, J. & Pirke, K. M. Effects of carbohydrate and protein meals on plasma large neutral amino acids, glucose, and insulin plasma levels of anorectic patients. Metabolism 35, 938–943 (1986).

Attia, E., Wolk, S., Cooper, T., Glasofer, D. & Walsh, B. Plasma tryptophan during weight restoration in patients with anorexia nervosa. Biol. Psychiatry 57, 674–678 (2005).

Kaye, W. H., Gwirtsman, H. E., George, D. T., Jimerson, D. C. & Ebert, M. H. CSF 5-HIAA concentrations in anorexia nervosa: reduced values in underweight subjects normalize after weight gain. Biol. Psychiatry 23, 102–105 (1988).

Klump, K. et al. Personality characteristics of women before and after recovery from an eating disorder. Psych. Med. 34, 1407–1418 (2004).

Frank, G. et al. Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11C]raclopride. Biol. Psychiatry 58, 908–912 (2005).

Kaye, W. H., Frank, G. K. & McConaha, C. Altered dopamine activity after recovery from restricting-type anorexia nervosa. Neuropsychopharmacology 21, 503–506 (1999).

Bergen, A. et al. Association of multiple DRD2 polymorphisms with anorexia nervosa. Neuropsychopharmacology 30, 1703–1710 (2005).

Lawrence, A. Impaired visual discrimination learning in anorexia nervosa. Appetite 20, 85–89 (2003).

Montague, R., Hyman, S. & Cohen, J. Computational roles for dopamine in behavioural control. Nature 431, 760–767 (2004).

Schultz, W. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Science 14, 139–147 (2004). This is an excellent summary of the new approach proposed by Schultz and others as to the function of dopamine in learning and reward. Specifically, it implicates dopamine as a key learning signal that functions to alter relative preferences among available choices.

Wagner, A. et al. Altered reward processing in women recovered from anorexia nervosa. Am. J. Psych. 164, 1842–1849 (2007).

Delgado, M., Nystrom, L., Fissel, C., Noll, D. & Fiez, J. Tracking the hemodynamic responses to reward and punishment in the striatum. J. Neurophysiol. 84, 3072–3077 (2000).

Berridge, K. & Robinson, T. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. 28, 309–369 (1998).

Halmi, K. et al. Predictors of treatment acceptance and completion in anorexia nervosa. Arch. Gen. Psychiatry 62, 776–781 (2005).

Tricomi, E. M., Delgado, M. R. & Fiez, J. A. Modulation of caudate activity by action contingency. Neuron 41, 281–292 (2004).

Lopez, C. et al. An examination of the concept of central coherence in women with anorexia nervosa. Int. J. Eat. Disord. 41, 143–152 (2008).

Zastrow, A. et al. Neural correlates of impaired cognitive-behavioral flexibility in anorexia nervosa. Am. J. Psychiatry 166, 608–616 (2009). This paper shows that impaired behavioural response shifting in AN is associated with hypoactivation in the ventral anterior cingulate-striato-thalamic loop that is involved in motivation-related behaviour. By contrast, subjects with AN have predominant activation of frontoparietal networks that is indicative of effortful and supervisory cognitive control during task performance.

Daw, N. D., Kakade, S. & Dayan, P. Opponent interactions between serotonin and dopamine. Neural Networks 15, 603–616 (2002).

Cools, R., Roberts, A. & Robbins, T. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn. Sci. 12, 31–40 (2008).

De Deurwaerdere, P., Navailles, S., Berg, K., Clarke, W. & Spampinato, U. Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J. Neurosci. 24, 3235–3241 (2004).

Di Matteo, V., Di Giovanni, G., Di Mascio, M. & Esposito, E. Biochemical and electrophysiological evidence that RO 60–0175 inhibits mesolimbic dopaminergic function through serotonin2C receptors. Brain Res. 865, 85–90 (2000).

Schweighofer, N., Tanaka, S. & Doya, K. Serotonin and the evaluation of future rewards: theory, experiments, and possible neural mechanisms. Ann. NY Acad. Sci. 1104, 289–300 (2007).

McClure, S., Laibson, D., Loewenstein, G. & Cohen, J. Separate neural systems value immediate and delayed monetary rewards. Science 306, 503–507 (2004). A study in which the authors propose that two competing systems, that is, the prefrontal cortex and the subcortical striatum, underlie the computation of the immediate and delayed value.

Westergaard, G. et al. Physiological correlates of aggression and impulsivity in free-ranging female primates. Neuropsychopharmacology 28, 1045–1055 (2003).

Attia, E., Schroeder, L. Pharmacologic treatment of anorexia nervosa: where do we go from here? Int. J. Eat. Disord. 37, S60–S63 (2005).

Tollefson, G. D. Selective serotonin reuptake inhibitors. in Textbook of Psychopharmacology. (Schatzberg, A. F. & Nemeroff, C. B.) 161–182 (American Psychiatric Press, Inc. Washington DC,1995).

Blier P, de Montigny, C. Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacology 21, S91–S98 (1999).

Bissada, H., Tasca, G. A., Barber, A. M. & Bradwejn, J. Olanzapine in the treatment of low body weight and obsessive thinking in women with anorexia nervosa: a randomized, double-blind, placebo-controlled trial. Am. J. Psych. 165, 1281–1288 (2008).

Elman, I., Borsook, D. & Lukas, S. E. Food intake and reward mechanisms in patients with schizophrenia: implications for metabolic disturbances and treatment with second-generation antipsychotic agents. Neuropsychopharmacology 31, 2091–2120 (2006).

Kelley, A. E. Ventral striatal control of appetite motivation: role in ingestive behavior and reward-related learning. Neurosci. Biobehav. Rev. 27, 765–776 (2004).

Saper, C. B., Chou, T. C., Elmquist, J. K. The need to feed: homeostatic and hedonic control of eating. Neuron 36:199–211 (2002).

Fernstrom, M. H., Weltzin, T. E., Neuberger, S., Srinivasagam, N. & Kaye, W. H. Twenty-four-hour food intake in patients with anorexia nervosa and in healthy control subjects. Biol. Psychiatry 36, 696–702 (1994).

Drewnowski, A., Pierce, B. & Halmi, K. A. Fat aversion in eating disorders. Appetite 10, 119–131 (1988).

Garfinkel, P., Moldofsky, H. & Garner, D. M. The stability of perceptual disturbances in anorexia nervosa. Psychol. Med. 9, 703–708 (1979).

Santel, S., Baving, L., Krauel, K., Münte, T. & Rotte, M. Hunger and satiety in anorexia nervosa: fMRI during cognitive processing of food pictures. Brain Res. 1114, 138–148 (2006).

Small, D. Central gustatory processing in humans. Adv. Otorhinolaryngol. 63, 191–220 (2006).

Chandraskekar, J., Hoon, M., Ryba, N. & Zuker, C. The receptors and cells for mammalian taste. Nature 444, 288–294 (2006).

Ogawa, H. Gustatory cortex of primates: anatomy and physiology. Neurosci. Res. 20, 1–13 (1994).

Scott, T. R., Yaxley, S., Sienkiewicz, Z. & Rolls, E. Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J. Neurophysiol. 56, 876–890 (1986).

Yaxley, S., Rolls, E. & Sienkiewicz, Z. Gustatory responses of single neurons in the insula of the macaque monkey. J. Neurophysiol. 63, 689–700 (1990).

Faurion, A. et al. Human taste cortical areas studied with functional magnetic resonance imaging: evidence of functional lateralization related to handedness. Neurosci. Lett. 277, 189–192 (1999).

Schoenfeld, M. et al. Functional magnetic resonance tomography correlates of taste perception in the human primary taste cortex. Neuroscience 127, 347–353 (2004).

O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience 4, 95–102 (2001).

Schultz, W., Tremblay, L. & Hollerman, J. R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex 10, 272–284 (2000).

Small, D. Toward an understanding of the brain substrates of reward in humans. Neuron 22, 668–671 (2002).

Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733 (2001).

Freedman, L. J., Insel, T. R. & Smith, Y. Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J. Comp. Neurol. 421, 172–188 (2000).

Ongur, D., An, X. & Price, J. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 401, 480–505 (1998).

Carter, C. S., Botvinick, M. M. & Cohen, J. D. The contribution of the anterior cingulate cortex to executive processes in cognition. Rev. Neurosci. 10, 49–57 (1999).

Critchley, H. D., Mathias, C. J. & Dolan, R. J. Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron 29, 537–545 (2001).

Critchley, H. D. et al. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 126, 2139–2152 (2003).

Furuyashiki, T., Holland, P. & Gallagher, M. Rat orbitofrontal cortex separately encodes response and outcome information during performance of goal-directed behavior. J. Neurosci. 28, 5127–5138 (2008).

Gottfried, J., O'Doherty, J. & Dolan, R. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2003).

Hare, T. A., O'Doherty, J., Camerer, C. F., Schultz, W. & Rangel, A. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J. Neurosci. 28, 5623–5630 (2008).

Roberts, A. Primate orbitofrontal cortex and adaptive behaviour. Trends Cogn. Sci. 10, 83–90 (2006).

Tataranni, P. A. et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc. Natl Acad. Sci. USA 96, 4569–4574 (1999).

Morris, J. S. & Dolan, R. J. Involvement of human amygdala and orbitofrontal cortex in hunger-enhanced memory for food stimuli. J. Neurosc. 21, 5304–5310 (2001).

Kringelbach, M. L., O'Doherty, J., Rolls, E. & Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex 13, 1064–1071 (2003).

Uher, R., Treasure, J., Heining, M., Brammer, M. C. & Campbell I. C. Cerebral processing of food-related stimuli: effects of fasting and gender. Behav. Brain Res. 169, 111–119 (2006).

Chikama, M., McFarland, N., Amaral, D. H. & Haber S. N. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J. Neurosci. 17, 9686–9705 (1997).

Fudge, J., Breitbart, M., Danish, M. & Pannoni, V. Insular and gustatory inputs to the caudal ventral striatum in primates. J. Comp. Neurol. 490, 101–118 (2005).

Wagner, A. et al. Altered insula response to a taste stimulus in individuals recovered from restricting-type anorexia nervosa. Neuropsychopharmacology 33, 513–523 (2008).

Ellison, Z. et al. Functional anatomy of calorie fear in anorexia nervosa. Lancet 352, 1192 (1998).

Gordon, C. M. et al. Neural substrates of anorexia nervosa: a behavioral challenge study with positron emission tomography. J. Pediatr. 139, 51–57 (2001).

Naruo, T. et al. Characteristic regional cerebral blood flow patterns in anorexia nervosa patients with binge/purge behavior. Am. J. Psychiatry 157, 1520–1522 (2000).

Nozoe, S. et al. Changes in regional cerebral blood flow in patients with anorexia nervosa detected through single photon emission tomography imaging. Biol. Psychiatry 34, 578–580 (1993).

Uher, R. et al. Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am. J. Psychiatry. 161, 1238–1246 (2004).

Devinsky, O., Morrell, M. J. & Vogt, B. A. Contributions of anterior cingulate cortex to behaviour. Brain 118, 279–306 (1995).

Critchley, H., Wiens, S., Rotshtein, P., Ohman, A. & Dolan, R. Neural systems supporting interoceptive awareness. Nature Neurosci. 7, 189–195 (2004). One of the first neuroimaging studies to demonstrate a direct association between interoceptive awareness and perceived emotions. In a paradigm that asked subjects to detect their heartbeat as accurately as possible, activation of an 'interoceptive' circuit involving the anterior insula/frontal operculum (AI/FO) was identified. AI/FO activation predicted accuracy in heartbeat detection, which in turn correlated with indices of negative emotional experience.

Paulus, M. & Stein, M. B. An insular view of anxiety. Biol. Psychiatry 60, 383–387 (2006).

Craig, A. How do you feel — now? The anterior insula and human awareness. Nature Rev. Neurosci. 10, 59–70 (2008).

Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nature Rev. Neurosci. 3, 655–666 (2002). This paper reviews the afferent neural system in non-human and human primates that represents all aspects of the physiological condition of the physical body. This system constitutes a representation of 'the material me', and thus might provide a foundation for subjective feelings, emotion and self-awareness.

Craig, A. Human feelings: why are some more aware than others? Trends Cogn. Sci. 8, 239–241 (2004).

Damasio, A. et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neurosci. 3, 1049–1056 (2000).

Bruch, H. Perceptual and conceptual disturbances in anorexia nervosa. Psychosom. Med. 24, 187–194 (1962).

Fassino, S., Piero, A., Gramaglia, C. & Abbate-Daga, G. Clinical, psychopathological and personality correlates of interoceptive awareness in anorexia nervosa, bulimia nervosa and obesity. Psychopathology 37, 168–174 (2004).

Garner, D. M., Olmstead, M. P. & Polivy, J. Development and validation of a multidimensional eating disorder inventory for anorexia and bulimia nervosa. Int. J. Eat. Disord. 2, 15–34 (1983).

Pollatos, O. et al. Reduced perception of bodily signals in anorexia nervosa. Eat. Behav. 9, 381–388 (2008).

Preuschoff, K., Quartz, S. & Bossaerts, P. Human insula activation reflects risk prediction errors as well as risk. J. Neurosci. 28, 2745–2752 (2008). This study uses an elegant design to disambiguate the role of the insular cortex in risk-related processing. In particular, the authors suggest that the insula is important for both generating prediction errors and risk (variance) related processing.

Carter, C. S. et al. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc. Natl Acad. Sci. USA 97, 1944–1948 (2000).

Ongur, D. & Price, J. L. Organization of networks within the orbital and medial prefrontal cortex of rats, monkeys, and humans. Cereb. Cortex 10, 206–219 (2000).

Rolls, E. T. The orbitofrontal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1433–1443 (1996).

Kerns, J. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

Redish, A. Addiction as a computational process gone awry. Science 306, 1944–1947 (2004).

Volkow, N. D., Wise, R. A. How can drug addiction help us understand obesity? Nature Neurosci. 8, 555–560 (2005).

Chambers, R., Taylor, J. & Potenza, M. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am. J. Psych. 160, 1041–1052 (2003).

Connan, F., Campbell, I., Katzman, M., Lightman, S. & Treasure, J. A neurodevelopmental model for anorexia nervosa. Physiol. Behav. 79, 13–24 (2003). This excellent synthesis integrates genetic, biological, cognitive and psychosocial factors, and interpersonal stress, to generate a neurodevelopmental hypothesis for the aetiology of AN.

Kirby, K., Petry, N. & Bickel, W. Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. J. Exp. Psychol. Gen. 128, 78–87 (1999).

Kaye, W., Wisniewski, L. Vulnerability to substance abuse in eating disorders. NIDA Res. Monogr. 159, 269–311 (1996).

Huttenlocher, P. & Dabholkar, A. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).

Jacobi, C., Hayward C, de Zwaan, M., Kraemer, H. & Agras, W. Coming to terms with risk factors for eating disorders: application of risk terminology and suggestions for a general taxonomy. Psych. Bull. 130, 19–65 (2004).

Klump, K., Burt, S., McGue, M. & Iacono, W. Changes in genetic and environmental influences on disordered eating across adolescence. A longitudinal twin study. Arch. Gen. Psychiatry 64, 1409–1415 (2007). The authors of this study present data from the first longitudinal twin studies in eating disorders. Findings highlight the transition from early to mid adolescence as a crucial time for the emergence of a genetic diathesis for disordered eating. The increase in genetic effects during this developmental stage corroborates previous research implicating puberty in the genetic aetiology of eating disorders.

Rubinow, D. R., Schmidt, P. J. & Roca, C. A. Estrogen-serotonin interactions: implications for affective regulation. Biol. Psychiatry 44, 839–850.

Torpy, D. J., Papanicolaou, D. A. & Chrousos, G. P. Sexual dismorphism of the human stress response may be due to estradiol-mediated stimulation of hypothalamic corticotropin-releasing hormone synthesis. J. Clin. Endocrinol. Metab. 82, 982 (1997).

Kaye, W. H. et al. Reduced cerebrospinal fluid levels of immunoreactive pro- opiomelanocortin related peptides (including beta-endorphin) in anorexia nervosa. Life Sci. 41, 2147–2155 (1987).