Những hiểu biết mới về tương tác vi sinh vật và cơ chế cạnh tranh khả thi trong quá trình sản xuất hydro từ bã tequila

Springer Science and Business Media LLC - Tập 106 - Trang 6861-6876 - 2022
Alma Toledo-Cervantes1, Hugo Oscar Méndez-Acosta1, Jorge Arreola-Vargas2, José Eduardo Gabriel-Barajas1, Mariana Nohely Aguilar-Mota1, Raúl Snell-Castro1
1Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Guadalajara, México
2Department of Plant Pathology and Microbiology, Texas A&M University, College Station, USA

Tóm tắt

Nghiên cứu này nhằm mục đích mô tả cộng đồng prokaryotic và tương tác vi sinh vật khả thi liên quan đến sản xuất hydro (H2) trong quá trình lên men tối (DF), áp dụng phân tích thành phần chính (PCA) để tương quan sự thay đổi trong các biến động vận hành, hóa lý và sinh học. Với mục đích này, một thiết bị phản ứng loại bể khuấy liên tục được cho ăn bằng bã tequila đã hoạt động ở các thời gian giữ thủy lực (HRT) là 24, 18 và 12 giờ để áp dụng các tỷ lệ tải hữu cơ là 20, 36 và 54 g-COD L−1 d−1, tương ứng với các giai đoạn I, II và III. Kết quả cho thấy có sự thay đổi cao về dân số của Archaea trong quá trình DF dẫn đến sự giảm tổng số chuỗi từ 6299 xuống 99. Liên quan đến cộng đồng vi khuẩn, vi khuẩn acid lactic (LAB) chiếm ưu thế với sự phong phú tương đối đạt 57,67%, trong khi vi khuẩn sản xuất H2 (HPB) chiếm ưu thế giảm từ 25,76% xuống 21,06% trong giai đoạn III. Các cơ chế loại trừ cạnh tranh khả thi như cạnh tranh cho các chất nền, sản xuất bacteriocin và suy giảm vi chất dinh dưỡng do Archaea và vi khuẩn không sản xuất H2 (non-HPB), đặc biệt là LAB, có thể ảnh hưởng tiêu cực đến sự thống trị của HPB như Ethanoligenens harbinense và Clostridium tyrobutyricum. Kết quả là, tỷ lệ sản xuất H2 thể tích tối đa thấp (672 mL-H2 L−1 d−1) và năng suất (3,88 mol-H2 đường đồng hóa−1) đã được thu được. Tình hình toàn cầu thu được thông qua các tương quan PCA cho thấy C. tyrobutyricum đã ảnh hưởng tích cực đến năng suất mol H2 thông qua quá trình lên men butyrate sử dụng con đường butyryl-CoA:acetate CoA transferase, trong khi HPB phong phú nhất E. harbinense giảm sự phong phú tương đối của nó tại HRT ngắn nhất hướng tới sự thống trị của non-HPB. Nghiên cứu này cung cấp những hiểu biết mới về các tương tác vi sinh vật và giúp hiểu rõ hơn về hiệu suất DF trong việc sản xuất H2 từ bã tequila làm chất nền.

Từ khóa

#prokaryotic community; microbial interactions; hydrogen production; dark fermentation; tequila vinasses; principal components analysis

Tài liệu tham khảo

Arreola-Vargas J, Jaramillo-Gante NE, Celis LB, Corona-González RI, González-Álvarez V, Méndez-Acosta HO (2016) Biogas production in an anaerobic sequencing batch reactor by using tequila vinasses: effect of pH and temperature. Water Sci Technol 73(3):550–556. https://doi.org/10.2166/wst.2015.520 Banerjee SP, Dora KC, Chowdhury S (2013) Detection, partial purification and characterization of bacteriocin produced by Lactobacillus brevis FPTLB3 isolated from freshwater fish. J Food Sci Technol 50:17–25. https://doi.org/10.1007/s13197-011-0240-4 Brenner DJ, Krieg NR, Staley JT, Garrity GM, Bergey DH (2005) Bergey’s Manual of Systematic Bacteriology. Springer Science+Business Media, New York Buitrón G, Carvajal C (2010) Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: Effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour Technol 101(23):9071–9077. https://doi.org/10.1016/j.biortech.2010.06.127 Buitrón G, Kumar G, Martinez-Arce A, Moreno G (2014a) Hydrogen and methane production via a two-stage processes (H2-SBR+CH4-UASB) using tequila vinasses. Int J Hydrogen Energy 39(33):19249–19255. https://doi.org/10.1016/j.ijhydene.2014.04.139 Buitrón G, Prato-Garcia D, Zhang A (2014b) Biohydrogen production from tequila vinasses using a fixed bed reactor. Water Sci Technol 70(12):1919–1925. https://doi.org/10.2166/wst.2014.433 Cabrol L, Marone A, Tapia-Venegas E, Steyer J, Ruiz-Filippi G, Trably E (2017) Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. Fems Microbiol Rev 41:158–181. https://doi.org/10.1093/femsre/fuw043 Calusinska M, Happe T, Joris B (2010) The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiol 156(Pt 6):1575–1588. https://doi.org/10.1099/mic.0.032771-0 Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R (2012) Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. Bmc Microbiol 12:295. https://doi.org/10.1186/1471-2180-12-295 da Silva VT, Mozer TS, da Silva CA (2017) Hydrogen: trends, production and characterization of the main process worldwide. Int J Hydrogen Energy 42(4):2018–2033. https://doi.org/10.1016/j.ijhydene.2016.08.219 Diaz-Vazquez D, Carrillo-Nieves D, Orozco-Nunnelly DA, Senés-Guerrero C, Gradilla-Hernández MS (2021) An integrated approach for the assessment of environmental sustainability in agro-industrial waste management practices: the case of the tequila industry. Front Environ Sci 9:229. https://doi.org/10.3389/fenvs.2021.682093 Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (2006) The Prokaryotes. Springer, New York DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017 Dzulkarnain ELN, Audu JO, Wan Dagang WRZ, Abdul-Wahab MF (2022) Microbiomes of biohydrogen production from dark fermentation of industrial wastes: current trends, advanced tools and future outlook. Bioresour Bioprocess 9(1):1–25. https://doi.org/10.1186/s40643-022-00504-8 Eaton AD, Clesceri LS, Greenberg AE, Franson MAH (2005) Standard methods for the examination of water & wastewater. American Public Health Association, New York Espinoza-Escalante FM, Pelayo-Ortíz C, Navarro-Corona J, González-García Y, Bories A, Gutiérrez-Pulido H (2009) Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane. Biomass Bioenergy 33(1):14–20. https://doi.org/10.1016/j.biombioe.2008.04.006 Espinoza-Escalante FM, Pelayo-Ortiz C, Gutiérrez-Pulido H, González-Álvarez V, Alcaraz-González V, Bories A (2008) Multiple response optimization analysis for pretreatments of Tequila’s stillages for VFAs and hydrogen production. Bioresour Technol 99(13):5822–5829. https://doi.org/10.1016/j.biortech.2007.10.008 Etchebehere C, Castelló E, Wenzel J, Anzola-rojas MP, Borzacconi L, Buitrón G, Cabrol L, Carminato VM, Carrillo-Reyes J, Cisneros-Pérez C, Moreno-Andrade I, Razo-Flores E, Filippi GR, Tapia-Venegas E, Toledo-Alarcón J, Zaiat M (2016) Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing. Appl Microbiol Biotechnol 100:3371–3384. https://doi.org/10.1007/s00253-016-7325-y Fujita R, Mochida K, Kato Y, Goto K (2010) Sporolactobacillus putidus sp. nov., an endospore-forming lactic acid bacterium isolated from spoiled orange juice. Int J Syst Evol Microbiol 60(7):1499–1503. https://doi.org/10.1099/ijs.0.002048-0 Ferry JG (1993) Methanogenesis: ecology, physiology, biochemistry & genetics. Chapman and Hall, New York Gabriel-Barajas JE, Arreola-Vargas J, Toledo-Cervantes A, Méndez-Acosta HO, Rivera-González JC, Snell-Castro R (2021) Prokaryotic population dynamics and interactions in an AnSBBR using tequila vinasses as substrate in co-digestion with acid hydrolysates of Agave tequilana var. azul bagasse for hydrogen production. J Appl Microbiol 132(1):413–428. https://doi.org/10.1111/jam.15196 García-Depraect O, Gómez-Romero J, León-Becerril E, López-López A (2017) A novel biohydrogen production process: Co-digestion of vinasses and Nejayote as complex raw substrates using a robust inoculum. Int J Hydrogen Energy 42:5820–5831. https://doi.org/10.1016/j.ijhydene.2016.11.204 García-Depraect O, León-Becerril E (2018) Fermentative biohydrogen production from tequila vinasses via the lactate-acetate pathway: Operational performance, kinetic analysis and microbial ecology. Fuel 234:151–160. https://doi.org/10.1016/j.fuel.2018.06.126 García-Depraect O, Rene ER, Diaz-Cruces VF, León-Becerril E (2019a) Effect of process parameters on enhanced biohydrogen production from tequila vinasses via the lactate-acetate pathway. Bioresour Technol 273:618–626. https://doi.org/10.1016/j.biortech.2018.11.056 García-Depraect O, Rene ER, Gómez-Romero J, López-López A, León-Becerril E (2019b) Enhanced biohydrogen production from the dark co-fermentation of tequila vinasse and nixtamalization wastewater: novel insights into ecological regulation by pH. Fuel 253:159–166. https://doi.org/10.1016/j.fuel.2019.04.147 García-Depraect O, Castro-Muñoz R, Muñoz R, Rene ER, León-Becerril E, Valdez-Vazquez I, Kumar G, Reyes-Alvarado LC, Martínez-Mendoza LJ, Carrillo-Reyes J, Buitrón G (2021a) A review on the factors influencing biohydrogen production from lactate: the key to unlocking enhanced dark fermentative processes. Bioresour Technol 324:124595. https://doi.org/10.1016/j.biortech.2020.124595 García-Depraect O, Muñoz R, Rodríguez E, Rene ER, Leon-Becerril E (2021b) Microbial ecology of a lactate-driven dark fermentation process producing hydrogen under carbohydrate-limiting conditions. Int J Hydrogen Energy 46(20):11284–11296. https://doi.org/10.1016/j.ijhydene.2020.08.209 Godon J, Zumstein E, Dabert P, Habouzit RIC (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63(7):2802–2813. https://doi.org/10.1128/aem.63.7.2802-2813.1997 Goodfellow M (2012) The Actinobacteria. In: Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s Manual of Systematic Bacteriology. Springer, New York, pp 171–206 Gophna U, Konikoff T, Nielsen HB, Aviv T (2017) Genomics Update Oscillospira and related bacteria – From metagenomic species to metabolic features. Environ Microbiol 19:835–841. https://doi.org/10.1111/1462-2920.13658 Guo XM, Trably E, Latrille E, Carrere H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: A review. Int J Hydrogen Energy 35(19):10660–10673. https://doi.org/10.1016/j.ijhydene.2010.03.008 Hamada M, Iino T, Tamura T, Iwami T (2009) Serinibacter salmoneus gen.nov., sp. nov., an actinobacterium isolated from the intestinal tract of a fish, and emended descriptions of the families Beutenbergiaceae and Bogoriellaceae. Int J Syst Evol Microbiol 59:2809–2814. https://doi.org/10.1099/ijs.0.011106-0 Hening A, Nguyen DH (2010) The competitive exclusion principle in stochastic environments. J Math Biol 80(5):1323–1351. https://doi.org/10.1007/s00285-019-01464-y Jarrell KF, Sprott GD (1982) Nickel Transport in Methanobacterium bryantiit. J Bacteriol 151(3):1195–1203. https://doi.org/10.1128/jb.151.3.1195-1203.1982 Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582. https://doi.org/10.1016/j.enzmictec.2005.09.015 Kim BH, Gadd GM (2008) Bacterial physiology and metabolism. Cambridge University Press, Cambridge Kim BR, Shin J, Guevarra RB, Lee JH, Kim DW, Seol KH, Lee JH, Kim HB, Isaacson RE (2017) Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol 27(12):2089–2093. https://doi.org/10.4014/jmb.1709.09027 Kim T, Lee Y, Chang K, Hwang S (2012) Effects of initial lactic acid concentration, HRTs, and OLRs on bio-hydrogen production from lactate-type fermentation. Bioresour Technol 103(1):136–141. https://doi.org/10.1016/j.biortech.2011.09.093 Kotsyurbenko OR, Friedrich MW, Simankova MV, Nozhevnikova AN, Golyshin PN, Timmis KN, Conrad R (2007) Shift from acetoclastic to H2-dependent methanogenesis in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol 73(7):2344–2348. https://doi.org/10.1128/AEM.02413-06 Lee J, Jang YS, Han MJ, Kim JY, Lee SY (2016) Deciphering Clostridium tyrobutyricum metabolism based on the whole-genome sequence and proteome analyses. Mbio 7(3):1–12. https://doi.org/10.1128/mBio.00743-16 Lin CY, Nguyen TML, Chu CY, Leu HJ, Lay CH (2018) Fermentative biohydrogen production and its byproducts: a mini review of current technology developments. Renew Sustain Energy Rev 82(3):4215–4220. https://doi.org/10.1016/j.rser.2017.11.001 Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2000) Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J. Gen. Appl Microbiol 46(3):147–165 Liu L, Zhang B, Tong H, Dong X (2006) Pediococcus ethanolidurans sp. nov., isolated from the walls of a distilled-spirit-fermenting cellar. Int J Syst Evol Microbiol 56(Pt 10):2405–2408. https://doi.org/10.1099/ijs.0.64407-0 Liu C, Huang D, Liu L, Zhang J (2014) Clostridium swellfunianum sp. nov., a novel anaerobic bacterium isolated from the pit mud of Chinese Luzhou-flavor liquor production. Antonie Van Leeuwenhoek 106(4):817–25. https://doi.org/10.1007/s10482-014-0251-z Ma K, Liu X, Dong X (2005) Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. Int J Syst Evol Microbiol 55(Pt 1):325–329. https://doi.org/10.1099/ijs.0.63254-0 Mcdowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F (2014) Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci 111:E3948–E3956. https://doi.org/10.1073/pnas.1407927111 Méndez-Acosta HO, Snell-Castro R, Alcaráz-González V, González-Álvarez V, Pelayo-Ortíz C (2010) Anaerobic treatment of Tequila vinasses in a CSTR-type digester. Biodegradation 21:357–363. https://doi.org/10.1007/s10532-009-9306-7 Montoya-Rosales J, Palomo-Briones R, Celis LB, Etchebehere C, Razo-Flores E (2020) Discontinuous biomass recycling as a successful strategy to enhance continuous hydrogen production at high organic loading rates. Int J Hydrogen Energy 45(35):17260–17269. https://doi.org/10.1016/j.ijhydene.2020.04.265 Morlon-Guyot J, Guyot JP, Pot B, De Haut IJ, Raimbault M (1998) Lactobacillus manihotivorans sp. nov., a new starch-hydrolysing lactic acid bacterium isolated during cassava sour starch fermentation. Int J Syst Evol Microbiol 48(4):1101–1109 Musikasang H, Sohsomboon N, Tani A, Maneerat S (2012) Bacteriocin-producing lactic acid bacteria as a probiotic potential from Thai indigenous chickens. Czech J Anim Sci 57:137–149. https://doi.org/10.17221/5568-CJAS Nishiyama T, Ueki A, Kaku N, Watanabe K, Ueki K (2009) Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59(8):1901–1907. https://doi.org/10.1099/ijs.0.008268-0 Palomo-Briones R, Razo-Flores E, Bernet N, Trably E (2017) Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control. Appl Energy 198:77–87. https://doi.org/10.1016/j.apenergy.2017.04.051 Papalexandratou Z, Lefeber T, Bahrim B, Lee OS, Daniel HM, De Vuyst L (2013) Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiol 35(2):73–85. https://doi.org/10.1016/j.fm.2013.02.015 Park J, Kim D, Kim S, Yoon J, Park H (2018) Effect of substrate concentration on the competition between Clostridium and Lactobacillus during biohydrogen production. Int J Hydrogen Energy 43(25):11460–11469. https://doi.org/10.1016/j.ijhydene.2017.08.150 Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM (2013) Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 3(90):1–24. https://doi.org/10.3389/fcimb.2013.00090 Pourramezan Z, Kermanshahi RK, Oloomi M, Aliahmadi A, Rezadoost H (2017) In vitro study of antioxidant and antibacterial activities of Lactobacillus probiotic spp. Folia Microbiol (praha) 63(1):31–42. https://doi.org/10.1007/s12223-017-0531-x Reichardt N, Duncan SH, Young P, Belenguer A, Leitch CM, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. Isme J 8:1323–1335. https://doi.org/10.1038/ismej.2014.14 Rubiano-Labrador C, Baena S, Diaz-Cardenas C, Patel B (2013) Caloramator quimbayensis sp. nov., an anaerobic moderately thermophilic bacterium isolated from a terrestrial hot spring. Int J Syst Evol Microbiol 63(Pt 4):1396–1402. https://doi.org/10.1099/ijs.0.037937-0 Schleifer KH (2009) Firmicutes. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman W (eds) Bergey’s Manual of Systematic Bacteriology, 2nd edn. Springer, New York, pp 19–1317 Siedler S, Rau MH, Bidstrup S, Vento JM, Aunsbjerg SD, Bosma EF, Chase LB, Neves AR (2020) Competitive exclusion is a major bioprotective mechanism of Lactobacilli against fungal spoilage in fermented milk. Appl Environ Microbiol 86(7):e02312-e2319. https://doi.org/10.1128/AEM.02312-19 Sikora A, Błaszczyk M, Jurkowski M, Zielenkiewicz U (2013) Lactic acid bacteria in hydrogen-producing consortia: on purpose or by coincidence? In: Kongo JM (ed) Lactic acid bacteria, 1st edn. Intech, London, pp 487–514 Taconi KA, Zappi ME, French WT, Brown LR (2008) Methanogenesis under acidic pH conditions in a semi-continuous reactor system. Biores Technol 99(17):8075–8081. https://doi.org/10.1016/j.biortech.2008.03.068 Thamacharoensuk T, Kitahara M, Ohkuma M, Thongchul N, Tanasupawat S (2015) Sporolactobacillus shoreae sp. nov. and Sporolactobacillus spathodeae sp. nov., two spore-forming lactic acid bacteria isolated from tree barks in Thailand. Int J Syst Evol Microbiol 65(4):1220–1226. https://doi.org/10.1099/ijs.0.000084 Thauer RK, Kirchniawy FH, Jungermann KA (1972) Properties and Function of the Pyruvate-Formate-Lyase Reaction in Clostridiae. Eur J Biochem 27(2):282–290. https://doi.org/10.1111/j.1432-1033.1972.tb01837.x Toledo-Cervantes A, Villafán-Carranza F, Arreola-Vargas J, Razo-Flores E, Méndez-Acosta HO (2020) Comparative evaluation of the mesophilic and thermophilic biohydrogen production at optimized conditions using tequila vinasses as substrate. Int J Hydrogen Energy 45(19):11000–11010. https://doi.org/10.1016/j.ijhydene.2020.02.051 Venkiteshwaran K, Milferstedt K, Hamelin J, Fujimoto M, Johnson M, Zitomer DH (2017) Correlating methane production to microbiota in anaerobic digesters fed synthetic wastewater. Water Res 110:161–169. https://doi.org/10.1016/j.watres.2016.12.010 Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. Plos one 4(10):e7401. https://doi.org/10.1371/journal.pone.0007401 Welte C, Kallnik V, Grapp M, Bender G, Ragsdale S, Deppenmeier U (2010) Function of Ech Hydrogenase in Ferredoxin-Dependent, Membrane-Bound Electron Transport in Methanosarcina mazei. J Bacteriol 192(3):674–678. https://doi.org/10.1128/JB.01307-09 Xing D, Ren N, Li Q, Lin M, Wang A, Zhao L (2006) Ethanoligenens harbinense ge. nov., sp. nov., isolated from molasses wastewater. Int J Syst Evol Microbiol 56:755–760. https://doi.org/10.1099/ijs.0.63926-0 Zhang L, Ban Q, Li J, Jha AK (2016) Response of syntrophic propionate degradation to pH decrease and microbial community shifts in an UASB reactor. J Microbiol Biotechnol 26(8):1409–1419. https://doi.org/10.4014/jmb.1602.02015 Zhang W, Zhang F, Li YX, Zeng RJ (2019) Inhibitory effects of free propionic and butyric acids on the activities of hydrogenotrophic methanogens in mesophilic mixed culture fermentation. Bioresour Technol 272:458–464. https://doi.org/10.1016/j.biortech.2018.10.076 Zhu Y, Yang ST (2004) Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110(2):143–157. https://doi.org/10.1016/j.jbiotec.2004.02.006