New insight into the stable grain size of nanotwinned Ni in steady-state creep: Effect of the ratio of effective-to-internal stress

International Journal of Plasticity - Tập 85 - Trang 172-189 - 2016
J. Li1, J.Y. Zhang1, G. Liu1, J. Sun1
1State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China

Tài liệu tham khảo

Ahlquist, 1970, A phenomenological theory of steady state creep based on average internal and effective stresses, Acta Metall., 18, 663, 10.1016/0001-6160(70)90096-9 Anderoglu, 2010, Plastic flow stability of nanotwinned Cu foils, Int. J. Plast., 26, 875, 10.1016/j.ijplas.2009.11.003 Argon, 1981, Internal stresses in power-law creep, Acta Metall., 29, 1877, 10.1016/0001-6160(81)90113-9 Bachurin, 2010, Dislocation-grain boundary interaction in <111> textured thin metal films, Acta Mater., 58, 5232, 10.1016/j.actamat.2010.05.037 Barai, 2008, Mechanics of creep resistance in nanocrystalline solids, Acta Mech., 195, 327, 10.1007/s00707-007-0558-1 Barnett, 2013, Estimating critical stresses required for twin growth in a magnesium Alloy, Metall. Mater. Trans. A, 44, 2962, 10.1007/s11661-012-1573-y Barnett, 2013, Plastic relaxation of the internal stress induced by twinning, Acta Mater., 61, 7859, 10.1016/j.actamat.2013.09.024 Basirat, 2012, A study of the creep behavior of modified 9Cr1Mo steel using continuum-damage modeling, Int. J. Plast., 37, 95, 10.1016/j.ijplas.2012.04.004 Blum, 2007, Flow stress and creep rate of nanocrystalline Ni, Scr. Mater., 57, 429, 10.1016/j.scriptamat.2007.04.041 Brons, 2013, Cryogenic indentation-induced grain growth in nanotwinned copper, Scr. Mater., 68, 781, 10.1016/j.scriptamat.2012.12.026 Caillard, 2003, Thermally Activated mechanisms in crystal plasticity, Pergamon Mater. Ser. Elsevier Sci., 8 Cao, 2015, Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins, Scr. Mater., 100, 98, 10.1016/j.scriptamat.2015.01.001 Carlton, 2007, What is behind the inverse Hall–Petch effect in nanocrystalline materials?, Acta Mater., 55, 3749, 10.1016/j.actamat.2007.02.021 Chauhan, 2007, Microstructural evolution of bulk nanocrystalline Ni during creep, J. Mater. Sci., 42, 1606, 10.1007/s10853-006-0823-z Cheng, 2010, Structure modulation driven by cyclic deformation in nanocrystalline NiFe, Phys. Rev. Lett., 104, 255501, 10.1103/PhysRevLett.104.255501 Choi, 2013, Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses, Int. J. Plast., 41, 53, 10.1016/j.ijplas.2012.08.008 Conrad, 1970, The athermal component of the flow stress in crystalline solids, Mater. Sci. Eng., 6, 265, 10.1016/0025-5416(70)90054-6 Eckert, 1992, Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition, J. Mater. Res., 7, 1751, 10.1557/JMR.1992.1751 Edalati, 2011, High-pressure torsion of pure metals: influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness, Acta Mater., 59, 6831, 10.1016/j.actamat.2011.07.046 Ekh, 2011, Influence of grain boundary conditions on modeling of size-dependence in polycrystals, Acta Mech., 218, 103, 10.1007/s00707-010-0403-9 Friedel, 1964 Gianola, 2006, Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films, Acta Mater., 54, 2253, 10.1016/j.actamat.2006.01.023 Gollapudi, 2010, Creep in nanocrystalline materials: role of stress assisted grain growth, Mater. Sci. Eng. A, 527, 5773, 10.1016/j.msea.2010.05.048 Guiu, 1964, Stress relaxation and the plastic deformation of solids, Phys. Stat. Sol., 6, 111, 10.1002/pssb.19640060108 Guo, 2013, Room temperature creep behavior of free-standing Cu films with bimodal grain size distribution, Scr. Mater., 68, 849, 10.1016/j.scriptamat.2013.02.008 Gurtin, 2008, A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation, J. Mech. Phys. Sol., 56, 640, 10.1016/j.jmps.2007.05.002 Hasegawa, 1972, Internal stress and dislocation structure during sigmoidal transient creep of a Copper-16 at. % Aluminium alloy, Metal. Sci. J., 6, 78, 10.1179/030634572790445858 Hirth, 1982 Hu, 2016, Plastic deformation behavior during unloading in compressive cyclic test of nanocrystalline copper, Mater. Sci. Eng. A, 651, 999, 10.1016/j.msea.2015.11.031 Jin, 2008, Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals, Acta Mater., 56, 1126, 10.1016/j.actamat.2007.11.020 Kassner, 2009 Kassner, 2013, Long range internal stresses in single-phase crystalline materials, Int. J. Plast., 45, 44, 10.1016/j.ijplas.2012.10.003 Kim, 2011, Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses, Adv. Funct. Mater., 21, 4550, 10.1002/adfm.201101164 Kocks, 1975, Thermodynamics and kinetics of slip, Prog. Mater. Sci., 19, 1 Kruml, 2008, About the determination of the thermal and athermal stress components from stress-relaxation experiments, Acta Mater., 56, 333, 10.1016/j.actamat.2007.09.027 Kumar, 2003, Deformation of electrodeposited nanocrystalline nickel, Acta Mater., 51, 387, 10.1016/S1359-6454(02)00421-4 Li, 2015, Twinning/detwinning-mediated grain growth and mechanical properties of free-standing nanotwinned Ni foils: grain size and strain rate effects, Mater. Sci. Eng. A, 628, 62, 10.1016/j.msea.2015.01.015 Li, 1967, Dislocation dynamics in deformation and recovery, Can. J. Phys., 45, 493, 10.1139/p67-043 Li, 1970, The role of dislocations in the flow stress grain size relationships. Metall, Mater. Trans., 1, 1145, 10.1007/BF02900225 Li, 2010, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature, 464, 877, 10.1038/nature08929 Li, 2009, Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation, Acta Mater., 57, 761, 10.1016/j.actamat.2008.10.021 Lu, 2009, Revealing the maximum strength in nanotwinned copper, Science, 323, 607, 10.1126/science.1167641 Lu, 2009, Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper, Acta Mater, 57, 5165, 10.1016/j.actamat.2009.07.018 Lu, 2015, Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper, Nat. Commun., 6, 7648, 10.1038/ncomms8648 Luo, 2014, Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading, Nat. Commun., 5, 3021, 10.1038/ncomms4021 Mohamed, 2003, A dislocation model for the minimum grain size obtainable by milling, Acta Mater., 51, 4107, 10.1016/S1359-6454(03)00230-1 Mompiou, 2012, In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium, Acta Mater., 60, 3402, 10.1016/j.actamat.2012.02.049 Neishi, 2002, Grain refinement of pure nickel using equal-channel angular pressing, Mater. Sci. Eng. A, 325, 54, 10.1016/S0921-5093(01)01404-6 Orlová, 1986, Dislocation structure in the high temperature creep of metals and solid solution alloys: a review, Mater. Sci. Eng., 77, 1, 10.1016/0025-5416(86)90349-6 Orlová, 1972, Dislocation structure and applied, effective and internal stress in high-temperature creep of alpha iron, Philos. Mag., 25, 865, 10.1080/14786437208229309 Rupert, 2009, Experimental observations of stress-driven grain boundary migration, Science, 326, 1686, 10.1126/science.1178226 Upmanyu, 2002, Molecular dynamics simulation of triple junction migration, Acta Mater., 50, 1405, 10.1016/S1359-6454(01)00446-3 Van Swygenhoven, 2002, Atomic mechanism for dislocation emission from nanosized grain boundaries, Phys. Rev. B, 66, 024101, 10.1103/PhysRevB.66.024101 Van Swygenhoven, 2006, Nucleation and propagation of dislocations in nanocrystalline fcc metals, Acta Mater, 54, 1975, 10.1016/j.actamat.2005.12.026 Van Swygenhoven, 2000, Grain-boundary structures in polycrystalline metals at the nanoscale, Phys. Rev. B, 62, 831, 10.1103/PhysRevB.62.831 Wang, 2012, Advanced TEM investigation of the plasticity mechanisms in nanocrystalline freestanding palladium films with nanoscale twins, Int. J. Plast., 37, 140, 10.1016/j.ijplas.2012.04.003 Wang, 2010, Detwinning mechanisms for growth twins in face-centered cubic metals, Acta Mater., 58, 2262, 10.1016/j.actamat.2009.12.013 Wang, 1995, Effect of grain size on mechanical properties of nanocrystalline materials, Acta Metall. Mater., 3, 519, 10.1016/0956-7151(94)00253-E Wang, 2006, Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni, Acta Mater., 54, 2715, 10.1016/j.actamat.2006.02.013 Wang, 2013, Defective twin boundaries in nanotwinned metals, Nat. Mater., 12, 697, 10.1038/nmat3646 Winning, 2002, On the mechanisms of grain boundary migration, Acta Mater., 50, 353, 10.1016/S1359-6454(01)00343-3 Xue, 2015, The formation mechanisms of growth twins in polycrystalline Al with high stacking fault energy, Acta Mater., 101, 62, 10.1016/j.actamat.2015.08.046 Zhao, 2015, Creep behavior as dislocation climb over NiAl nanoprecipitates in ferritic alloy: the effects of interface stresses and temperature, Int. J. Plast., 69, 89, 10.1016/j.ijplas.2015.02.006 Zhu, 2005, Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals, Acta Mater., 53, 4825, 10.1016/j.actamat.2005.06.033 Zhu, 2015, Strengthening mechanisms of the nanolayered polycrystalline metallic multilayers assisted by twins, Int. J. Plast., 72, 168, 10.1016/j.ijplas.2015.05.014 Zhu, 2011, Dislocation-twin interactions in nanocrystalline fcc metals, Acta Mater., 59, 812, 10.1016/j.actamat.2010.10.028