New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
B. Ahmad, H. Batarfi, J.J. Nieto, Ó. Otero-Zarraquiños, W. Shammakh, Adv. Differ. Equ. 2015, 1 (2015)
S. Kumar, A. Yildirim, Y. Khan, H. Jafari, K. Sayevand, L. Wei, J. Fract. Calculus Appl. 2, 1 (2012)
M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)
J. Lozada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)
A. Atangana, J.J. Nieto, Adv. Mech. Eng. 7, 1 (2015)
J.F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J.M. Reyes, I.O. Sosa, Adv. Differ. Equ. 2016, 1 (2016)
J.F. Gómez-Aguilar, V.F. Morales-Delgado, M. Taneco-Hernández, D. Baleanu, R.F. Escobar-Jiménez, M.M. Al Qurashi, Entropy 18, 402 (2016)
A. Coronel-Escamilla, J.F. Gómez-Aguilar, M.G. López-López, V.M. Alvarado-Martínez, G.V. Guerrero-Ramírez, Chaos, Solitons Fractals 91, 248 (2016)
J.F. Gómez-Aguilar, to be published in Physica A (2016)
R. Hilfer, Fractional Calculus and Regular Variation in Thermodynamics, edited by R. Hilfer, Applications of Fractional Calculus in Physics, Vol. 429 (World Scientific, Singapore, 2000)
R. Hilfer, Threefold Introduction to Fractional Derivatives, in Anomalous Transport: Foundations and Applications, edited by R. Klages, G. Radons, I.M. Sokolov (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008) DOI: 10.1002/9783527622979.ch2
I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation (Springer Science & Business Media, Heidelberg, 2011)