New hybrid foam materials for impact protection
Tài liệu tham khảo
Ashby, 1983, The mechanical properties of cellular solids, Metall Trans A, 14, 1755, 10.1007/BF02645546
Ashby, 2000
Destefanis, 2006, Selecting enhanced space debris shields for manned spacecraft, Int J Impact Eng, 33, 219, 10.1016/j.ijimpeng.2006.09.065
Ma, 2007, Energy absorption of double-layer foam cladding for blast alleviation, Int J Impact Eng, 34, 329, 10.1016/j.ijimpeng.2005.07.012
Hanssen, 2002, Close-range blast loading of aluminium foam panels, Int J Impact Eng, 27, 593, 10.1016/S0734-743X(01)00155-5
Wadley, 2010, An active concept for limiting injuries caused by air blasts, Int J Impact Eng, 37, 317, 10.1016/j.ijimpeng.2009.06.006
Zhao, 2005, An experimental study on the behaviour under impact loading of metallic cellular materials, Int J Mech Sci, 47, 757, 10.1016/j.ijmecsci.2004.12.012
Gibson, 1997, 10.1017/CBO9781139878326
Goldsmith, 1992, An experimental-study of energy-absorption in impact on sandwich plates, Int J Impact Eng, 12, 241, 10.1016/0734-743X(92)90447-2
Zhao, 1998, Crushing behaviour of aluminium honeycombs under impact loading, Int J Impact Eng, 21, 827, 10.1016/S0734-743X(98)00034-7
Rinde, 1971, Time and temperature dependence of mechanical properties of polystyrene bead foams, J Appl Polym Sci, 15, 1377, 10.1002/app.1971.070150608
Shim, 1997, Modelling impact deformation of foam-plate sandwich systems, Int J Impact Eng, 19, 615, 10.1016/S0734-743X(96)00049-8
Dannemann, 2000, High strain rate compression of closed-cell aluminium foams, Mat Sci Eng A Struct, 293, 157, 10.1016/S0921-5093(00)01219-3
Deshpande, 2000, High strain rate compressive behaviour of aluminium alloy foams, Int J Impact Eng, 24, 277, 10.1016/S0734-743X(99)00153-0
Evans, 1998, Multifunctionality of cellular metal systems, Prog Mater Sci, 43, 171, 10.1016/S0079-6425(98)00004-8
Mukai, 2006, Compressive response of a closed-cell aluminum foam at high strain rate, Scripta Mater, 54, 533, 10.1016/j.scriptamat.2005.10.062
Mukai, 1999, Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading, Scripta Mater, 40, 921, 10.1016/S1359-6462(99)00038-X
Paul, 2000, Strain rate sensitivity of a closed-cell aluminum foam, Mater Sci Eng A, 281, 1, 10.1016/S0921-5093(99)00750-9
Hou, 2010, Ballistic impact experiments of metallic sandwich panels with aluminium foam core, Int J Impact Eng, 37, 1045, 10.1016/j.ijimpeng.2010.03.006
Reyes-Villanueva, 2004, The high velocity impact response of composite and fml-reinforced sandwich structures, Compos Sci Technol, 64, 35, 10.1016/S0266-3538(03)00197-0
Hanssen, 2006, A numerical model for bird strike of aluminium foam-based sandwich panels, Int J Impact Eng, 32, 1127, 10.1016/j.ijimpeng.2004.09.004
Lindholm, 1971, Effect of strain rate on yield strength, tensile strength and elongation of 3 aluminum alloys, J Mater, 6, 119
Mukai, 1999, Dynamic compressive behavior of an ultra-lightweight magnesium foam, Scripta Mater, 41, 365, 10.1016/S1359-6462(99)00186-4
Calladine, 1984, Strain-rate and inertia effects in the collapse of 2 types of energy-absorbing structures, Int J Mech Sci, 26, 689, 10.1016/0020-7403(84)90021-3
Su, 1995, Inertia-sensitive impact energy-absorbing structures. 1. Effect of inertia and elasticity, Int J Impact Eng, 16, 651, 10.1016/0734-743X(94)00061-Z
Su, 1995, Inertia-sensitive impact energy-absorbing structures .2. Effect of strain-rate, Int J Impact Eng, 16, 673, 10.1016/0734-743X(94)00062-2
Jung, 2011, Nanonickel coated aluminum foam for enhanced impact energy absorption, Adv Eng Mater, 13, 23, 10.1002/adem.201000190
Jung A, Natter H, Hempelmann R, Lach E. Metal foams. 2010 wo 2010/142436 a1.
Jung, 2012, Hybrid metal foams: mechanical testing and determination of mass flow limitations during electroplating, Int J Material Sci, 2, 97
Hopkinson, 1914, A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets, Philos Trans R Soc Lond Ser A, 213, 437, 10.1098/rsta.1914.0010
Kolsky, 1949, An investigation of the mechanical properties of materials at very high rates of loading, Proc Phys Soc Lond B, 62, 676, 10.1088/0370-1301/62/11/302
Jung, 2009, Nanocrystalline alumina dispersed in nanocrystalline nickel: enhanced mechanical properties, J Mater Sci, 44, 2725, 10.1007/s10853-009-3330-1
Dirras, 2010, Fine-grained nickel deformed by direct impact at different velocities: microstructure and mechanical properties, Mat Sci Eng A Struct, 527, 4128, 10.1016/j.msea.2010.03.045
Prasad, 2010, Superplasticity in electrodeposited nanocrystalline nickel, Acta Mater, 58, 5724, 10.1016/j.actamat.2010.06.047
Olurin, 2000, Indentation resistance of an aluminium foam, Scripta Mater, 43, 983, 10.1016/S1359-6462(00)00519-4
Teixeira-Dias F, Valente R, Henriques M, Grilo M, Lopes C. Using numeical simulation to assess the ballistic performance of light-alloy targets. In: Security and use of innovative technologies against terrorism – LWAG – light weight armour for defence & security.