Các phức hợp vàng(III) mới TGS 121, 404, và 702 cho thấy hoạt tính chống khối u trong ung thư đại tràng do viêm ruột: một nghiên cứu in vitro và in vivo
Tóm tắt
Từ khóa
Tài liệu tham khảo
Siegel RL, Miller KD, Sauer AG, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145–64. https://doi.org/10.3322/CAAC.21601.
Lawes DA, Pearson T, SenGupta S, Boulos PB. The role of MLH1, MSH2, and MSH6 in the development of multiple colorectal cancers. Br J Cancer. 2005;93:472. https://doi.org/10.1038/SJ.BJC.6602708.
Wang M, Zhou B, Cong W, Zhang M, Li Z, Li Y, et al. Amelioration of AOM/DSS-induced murine colitis-associated cancer by evodiamine intervention is primarily associated with gut microbiota-metabolism-inflammatory signaling axis. Front Pharmacol. 2021;12:3822. https://doi.org/10.3389/fphar.2021.797605.
Kim ER, Chang DK. Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol. 2014;20:9872. https://doi.org/10.3748/WJG.V20.I29.9872.
Kanehara K, Ohnuma S, Kanazawa Y, Sato K, Kokubo S, Suzuki H, et al. The indole compound MA-35 attenuates tumorigenesis in an inflammation-induced colon cancer model. Sci Rep. 2019;9:1–13. https://doi.org/10.1038/s41598-019-48974-9.
Gurba A, Taciak P, Sacharczuk M, Młynarczuk-Biały I, Bujalska-Zadrożny M, Fichna J. Gold(III) derivatives in colon cancer treatment. Int J Mol Sci. 2022;23:724. https://doi.org/10.3390/IJMS23020724.
Guo J, Rahme K, He Y, Li LL, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomed. 2017;12:6131–52. https://doi.org/10.2147/IJN.S140772.
Szczepaniak A, Fichna J. Organometallic compounds and metal complexes in current and future treatments of inflammatory bowel disease and colorectal cancer-a critical review. Biomolecules. 2019. https://doi.org/10.3390/BIOM9090398.
Krajewska JB, Włodarczyk J, Jacenik D, Kordek R, Taciak P, Szczepaniak R, et al. New class of anti-inflammatory therapeutics based on gold(III) complexes in intestinal inflammation-proof of concept based on in vitro and in vivo studies. Int J Mol Sci. 2021;22:3121. https://doi.org/10.3390/IJMS22063121.
Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm. 2019;16:1–23. https://doi.org/10.1021/acs.molpharmaceut.8b00810.
Mármol I, Virumbrales-Muñoz M, Quero J, Sánchez-de-Diego C, Fernández L, Ochoa I, et al. Alkynyl gold(I) complex triggers necroptosis via ROS generation in colorectal carcinoma cells. J Inorg Biochem. 2017;176:123–33. https://doi.org/10.1016/J.JINORGBIO.2017.08.020.
Trommenschlager A, Chotard F, Bertrand B, Amor S, Richard P, Bettaïeb A, et al. Gold(I)–coumarin–caffeine-based complexes as new potential anti-inflammatory and anticancer trackable agents. ChemMedChem. 2018;13:2408–14. https://doi.org/10.1002/CMDC.201800474.
Toubia I, Nguyen C, Diring S, Ali LMA, Larue L, Aoun R, et al. Synthesis and anticancer activity of gold porphyrin linked to malonate diamine platinum complexes. Inorg Chem. 2019;58:12395–406. https://doi.org/10.1021/ACS.INORGCHEM.9B01981.
Tong KC, Hu D, Wan PK, Lok CN, Che CM. Anticancer gold(III) compounds with porphyrin or N-heterocyclic carbene ligands. Front Chem. 2020. https://doi.org/10.3389/FCHEM.2020.587207.
Zou T, Lum CT, Lok CN, Zhang JJ, Che CM. Chemical biology of anticancer gold(III) and gold(I) complexes. Chem Soc Rev. 2015;44:8786–801. https://doi.org/10.1039/C5CS00132C.
AbdelKhalek A, Abutaleb NS, Mohammad H, Seleem MN. Antibacterial and antivirulence activities of auranofin against Clostridium difficile. Int J Antimicrob Agents. 2019;53:54–62. https://doi.org/10.1016/J.IJANTIMICAG.2018.09.018.
Lipiec S, Gurba A, Agnieszczak IM, Szczepankiewicz AA, Szymański P, Taciak P, et al. New gold(III) cyanide complex TGS 121 induces ER stress, proteasome inhibition, and death of Ras-hyperactivated cells. Toxicol In Vitro. 2023;88: 105556. https://doi.org/10.1016/J.TIV.2023.105556.
Włodarczyk J, Krajewska J, Szeleszczuk Ł, Szałwińska P, Gurba A, Lipiec S, et al. A new gold(III) complex, TGS 703, shows potent anti-inflammatory activity in colitis via the enzymatic and non-enzymatic antioxidant system—an in vitro, in silico, and in vivo study. Int J Mol Sci. 2023;24:7025. https://doi.org/10.3390/IJMS24087025.
Ciszewski WM, Włodarczyk J, Chmielewska-Kassassir M, Fichna J, Wozniak LA, Sobierajska K. Evening primrose seed extract rich in polyphenols modulates the invasiveness of colon cancer cells by regulating the TYMS expression. Food Funct. 2022;13:10994–1007. https://doi.org/10.1039/D2FO01737G.
Zielińska M, Szymaszkiewicz A, Jacenik D, Schodel L, Sałaga M, Zatorski H, et al. Cyclic derivative of morphiceptin Dmt-cyclo-(D-Lys-Phe-D-Pro-Asp)-NH2(P-317), a mixed agonist of MOP and KOP opioid receptors, exerts anti-inflammatory and anti-tumor activity in colitis and colitis-associated colorectal cancer in mice. Eur J Pharmacol. 2020. https://doi.org/10.1016/J.EJPHAR.2020.173463.
Tesauro D. Metal complexes in diagnosis and therapy. Int J Mol Sci. 2022;23:4377. https://doi.org/10.3390/IJMS23084377.
Tolbatov I, Marrone A, Coletti C, Re N. Computational studies of Au(I) and Au(III) anticancer metallodrugs: a survey. Molecules. 2021;26:7600. https://doi.org/10.3390/MOLECULES26247600.
Lipiec S, Agnieszczak I, Masztalerz J, Szeleszczuk L, Fichna J, Młynarczuk-Biały I. P-308 Novel gold(III) TGS121 complex selectively affects proteostasis of Ras-hyperactivated colorectal cancer cells via a shift in signaling pathways. Ann Oncol. 2023;34:124. https://doi.org/10.1016/J.ANNONC.2023.04.364.
Muñoz-Sánchez J, Chánez-Cárdenas ME. A review on hemeoxygenase-2: focus on cellular protection and oxygen response. Oxid Med Cell Longev. 2014. https://doi.org/10.1155/2014/604981.
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol. 2021;21:411–25. https://doi.org/10.1038/s41577-020-00491-x.
Chau LY. Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci. 2015;22:1–7. https://doi.org/10.1186/S12929-015-0128-0.
Gandini NA, Alonso EN, Fermento ME, Mascaró M, Abba MC, Coló GP, et al. Heme oxygenase-1 has an antitumor role in breast cancer. Antioxid Redox Signal. 2019;30:2030–49. https://doi.org/10.1089/ARS.2018.7554.
Andrés NC, Fermento ME, Gandini NA, Romero AL, Ferro A, Donna LG, et al. Heme oxygenase-1 has antitumoral effects in colorectal cancer: Involvement of p53. Exp Mol Pathol. 2014;97:321–31. https://doi.org/10.1016/J.YEXMP.2014.09.012.
Rushworth SA, MacEwan DJ, O’Connell MA. Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol. 2008;181:6730–7. https://doi.org/10.4049/JIMMUNOL.181.10.6730.
Tertis M, Leva PI, Bogdan D, Suciu M, Graur F, Cristea C. Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosens Bioelectron. 2019;137:123–32. https://doi.org/10.1016/J.BIOS.2019.05.012.
De Simone V, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2015;34:3493–503. https://doi.org/10.1038/ONC.2014.286.
Heichler C, Scheibe K, Schmied A, Geppert CI, Schmid B, Wirtz S, et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut. 2020;69:1269–82. https://doi.org/10.1136/GUTJNL-2019-319200.
Yoshida SI, Kato T, Sakurada S, Kurono C, Yang JP, Matsui N, et al. Inhibition of IL-6 and IL-8 induction from cultured rheumatoid synovial fibroblasts by treatment with aurothioglucose. Int Immunol. 1999;11:151–8. https://doi.org/10.1093/INTIMM/11.2.151.
Gul A, Kunwar B, Mazhar M, Faizi S, Ahmed D, Shah MR, et al. Rutin and rutin-conjugated gold nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-κB and iNOS activation. Int Immunopharmacol. 2018;59:310–7. https://doi.org/10.1016/j.intimp.2018.04.017.
Waniczek D, Świętochowska E, Śnietura M, Kiczmer P, Lorenc Z, Muc-Wierzgoń M. Salivary concentrations of chemerin, α-defensin 1, and TNF-α as potential biomarkers in the early diagnosis of colorectal cancer. Metabolites. 2022;12:704. https://doi.org/10.3390/METABO12080704/S1.
Al Obeed OA, Alkhayal KA, Al Sheikh A, Zubaidi AM, Vaali-Mohammed MA, Boushey R, et al. Increased expression of tumor necrosis factor-α is associated with advanced colorectal cancer stages. World J Gastroenterol. 2014;20:18390–6. https://doi.org/10.3748/WJG.V20.I48.18390.
Nath A, Pal R, Singh LM, Saikia H, Rahaman H, Ghosh SK, et al. Gold-manganese oxide nanocomposite suppresses hypoxia and augments pro-inflammatory cytokines in tumor associated macrophages. Int Immunopharmacol. 2018;57:157–64. https://doi.org/10.1016/J.INTIMP.2018.02.021.
Młynarczuk-Biały I, Roeckmann H, Kuckelkorn U, Schmidt B, Umbreen S, Goła̧b J, et al. Combined effect of proteasome and calpain inhibition on cisplatin-resistant human melanoma cells. Cancer Res. 2006;66:7598–605. https://doi.org/10.1158/0008-5472.CAN-05-2614.
Bierie B, Moses HL. Tumour microenvironment - TGFΒ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6:506–20. https://doi.org/10.1038/NRC1926.
Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001;12:27–36. https://doi.org/10.1091/MBC.12.1.27/ASSET/IMAGES/LARGE/MK0111409008.JPEG.
Vilar CJF, Ribeiro SB, de Araújo AA, Guerra GCB, de Araújo Júnior RF, de Brito GAC, et al. Effect of gold nanoparticle on 5-fluorouracil-induced experimental oral mucositis in hamsters. Pharmaceutics. 2020. https://doi.org/10.3390/PHARMACEUTICS12040304.