New forms of the Cauchy operator and some of their applications

Russian Journal of Mathematical Physics - Tập 23 - Trang 124-134 - 2016
H. M. Srivastava1,2, M. A. Abdlhusein3
1Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada
2China Medical University, Taichung, Taiwan, Republic of China
3Department of Mathematics, College of Education for Pure Sciences, Thi-Qar University, Thi-Qar, Iraq

Tóm tắt

In this paper, we first construct the Cauchy q-shift operator T(a, b;D xy ) and the Cauchy q-difference operator L(a, b; θ xy ). We then apply these operators in order to represent and investigate some new families of q-polynomials which are defined in this paper. We derive some q-identities such as generating functions, symmetry properties and Rogers-type formulas for these q-polynomials. We also give an application for the q-exponential operator R(bD q ).

Tài liệu tham khảo

M. A. Abdlhusein, “The Euler Operator for Basic Hypergeometric Series,” Int. J. Adv. Appl. Math. Mech. 2, 42–52 (2014). L. Carlitz and W. A. Al-Salam, “Some Orthogonal q-Polynomials,” Math. Nachr. 30, 47–61 (1965). L. Carlitz, “Generating Functions for Certain q-Orthogonal Polynomials,” Collect. Math. 23, 91–104 (1972). J. Cao, “Generalizations of Certain Carlitz’s Trilinear and Srivastava–Agarwal Type Generating Functions,” J. Math. Anal. Appl. 396, 351–362 (2012). J. Cao, “On Carlitz’s Trilinear Generating Functions,” Appl. Math. Comput. 218, 9839–9847 (2012). J. Cao and H. M. Srivastava, “Some q-Generating Functions of the Carlitz and Srivastava–Agarwal Types Associated with the Generalized Hahn Polynomials and the Generalized Rogers–Szeg?o Polynomials,” Appl. Math. Comput. 219, 8398–8406 (2013). V. Y. B. Chen, q-Difference Operator and Basic Hypergeometric Series (Ph. D. Thesis, Nankai University, Tianjin, People’s Republic of China, 2009). V. Y. B. Chen and N. S. S. Gu, “The Cauchy Operator for Basic Hypergeometric Series,” Adv. Appl. Math. 41, 177–196 (2008). W. Y. C. Chen, A. M. Fu, and B. Zhang, “The Homogeneous q-Difference Operator,” Adv. Appl. Math. 31, 659–668 (2003). W. Y. C. Chen and Z.-G. Liu, “Parameter Augmenting for Basic Hypergeometric Series. II,” J. Combin. Theory Ser. A 80, 175–195 (1997). W. Y. C. Chen and Z.-G. Liu, “Parameter Augmentation for Basic Hypergeometric Series. I,” Mathematical Essays in Honor of Gian-Carlo Rota (Eds., B. E. Sagan and R. P. Stanley), Birkhäuser, Boston, 111–129 (1998). W. Y. C. Chen, H. L. Saad, and L. H. Sun, “The Bivariate Rogers–Szeg?o Polynomials,” J. Phys. A: Math. Theoret. 40, 6071–6084 (2007). W. Y. C. Chen, H. L. Saad, and L. H. Sun, “An Operator Approach to the Al-Salam–Carlitz Polynomials,” J. Math. Phys. 51, Article ID 043502 (2010). J. Cigler, “Elementare q-Identitäten,” Publ. Inst. Rech. Math. Av., 23–57 (1982). G. Gasper and M. Rahman, Basic Hypergeometric Series (Second Ed., Cambridge University Press, Cambridge, MA, 2004). Z.-G. Liu, “A New Proof of the Nassrallah–Rahman Integral,” Acta Math. Sinica 41, 405–410 (1998). H. L. Saad and M. A. Abdlhusein, “The q-Exponential Operator and Generalized Rogers–Szego Polynomials,” J. Adv. Math. 8, 1440–1455 (2014). H. L. Saad and A. A. Sukhi, “Another Homogeneous q-Difference Operator,” Appl. Math. Comput. 215, 4332–4339 (2010). H. L. Saad and A. A. Sukhi, “The q-Exponential Operator,” Appl. Math. Sci. 7, 6369–6380 (2005). H. M. Srivastava and A. K. Agarwal, “Generating Functions for a Class of q-Polynomials,” Ann. Mat. Pura Appl. (Ser. 4) 154, 99–109 (1989). H. M. Srivastava and V. K. Jain, “Some Multilinear Generating Functions for q-Hermite Polynomials,” J. Math. Anal. Appl. 144, 147–157 (1989). H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series (Halsted Press, Ellis Horwood Limited, Chichester, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985). H. M. Srivastava, “Some Generalizations and Basic (or q-) Extensions of the Bernoulli, Euler and Genocchi Polynomials,” Appl. Math. Inform. Sci. 5, 390–444 (2011). H. M. Srivastava, S. N. Singh, S. P. Singh, and V. Yadav, “Some Conjugate WP-Bailey Pairs and Transformation Formulas for q-Series,” Creat. Math. Inform. 24, 199–209 (2015).