Cảm biến huỳnh quang mới cho cation antimon và kim loại chuyển tiếp dựa trên homotrioxacalix[3]arene có tay cầm amide rhodamine

Journal of inclusion phenomena - Tập 66 - Trang 125-131 - 2009
Chong Wu1, Wen-Juan Zhang1, Xi Zeng1, Lan Mu1, Sai-Feng Xue2, Zhu Tao2, Takehiko Yamato3
1School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Peoples Republic of China
2Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Peoples Republic of China
3Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, Japan

Tóm tắt

Một cảm biến huỳnh quang mới 1 dựa trên homotrioxacalix[3]arene có tay cầm amide rhodamine đã được tổng hợp, và hành vi cảm biến của nó đối với các ion kim loại đã được nghiên cứu bằng quang phổ UV–vis và huỳnh quang. Khi thêm cation kim loại (Sb3+, Fe3+, Ni2+), đã quan sát thấy sự tăng cường phát huỳnh quang đáng kể trong khoảng 500–600 nm và sự thay đổi màu sắc.

Từ khóa

#cảm biến huỳnh quang #rhodamine amide #homotrioxacalix[3]arene #ion kim loại #quang phổ

Tài liệu tham khảo

Desvergne, J.P., Czarnik, A.W. (eds.): Chemosensors of Ion and Molecule Recognition. Kluwer Academic Publishers, Dordrecht, The Netherlands (1997) Amendola, V., Fabbrizzi, L., Licchelli, M., Mangano, C., Pallavicini, P., Parodi, L., Poggi, A.: Molecular events switched by transition metals. Coord. Chem. Rev. 190–192, 649–669 (1999) Prodi, L., Bolletta, F., Montalti, M., Zaccheroni, N.: Luminescent chemosensors for transition metal ions. Coord. Chem. Rev. 205, 59–83 (2000) Rurak, K.: Flipping the light switch ‘ON’—the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57, 2161–2195 (2001) Czarnik, A.W.: Fluorescent Chemosensors for Ion and Molecule Recognition. American Chemical Society, Washington, DC (1993) de Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997) Valeur, B., Leray, I.: Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3–40 (2000) Rurack, K., Resch-Genger, U.: Rigidization, preorientation and electronic decoupling-the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem. Soc. Rev. 31, 116–127 (2002) Shi, W., Ma, H.M.: Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. Chem. Commun. 16,1856–1858 (2008) Chatterjee, A., Santra, M., Won, N., Kim, S., Kim, J.K., Kim, S.B., Ahn, K.H.: Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J. Am. Chem. Soc. 131, 2040–2041 (2009) Huang, J.H., Xu, Y.F., Qian, X.H.: A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS-containing receptor. J. Org. Chem. 74, 2167–2170 (2009) Huang, K.W., Yang, H., Zhou, Z.G., Yu, M.X., Li, F.Y., Gao, X., Yi, T., Huang, C.H.: Multisignal hemosensor for Cr3+ and its application in bioimaging. Org. Lett. 10, 2557–2560 (2008) Xiang, Y., Tong, A.J.: Ratiometric and selective fluorescent chemodosimeter for Cu(II) by Cu(II)-induced oxidation. Luminescence 23, 28–31 (2008) Soh, J.H., Swamy, K.M.K., Kim, S.K., Kim, S., Lee, S.H., Yoon, J.: Rhodamine urea derivatives as fluorescent chemosensors for Hg2+. Tetrahedron Lett. 48, 5966–5969 (2007) Nishiyabu, R., Anzenbacher Jr, P.: Sensing of antipyretic carboxylates by simple chromogenic calix[4]pyrroles. J. Am. Chem. Soc. 127, 8270–8271 (2005) Gac, S.L., Zeng, X.S., Girardot, C., Jabin, I.: Efficient synthesis and host–guest properties of a new class of calix[6]azacryptands. J. Org. Chem. 71, 9233–9236 (2006) Quinlan, E., Matthews, S.E., Gunnlaugsson, T.: Colorimetric recognition of anions using preorganized tetra-amidourea derived calix[4]arene sensors. J. Org. Chem. 72, 7497–7503 (2007) Babu, J.N., Bhalla, V., Kumar, M., Mahajan, R.K., Puri, R.K.: A chloride selective sensor based on a calix[4]arene possessing a urea moiety. Tetrahedron Lett. 49, 2772–2775 (2008) Marcos, P.M., Ascenso, J.R., Segurado, M.A.P., Bernardino, R.J., Cragg, P.J.: Synthesis, binding properties and theoretical studies of p-tert-butylhexahomotrioxacalix[3]arene tri(adamantyl)ketone with alkali, alkaline earth, transition, heavy metal and lanthanide cations. Tetrahedron 65, 496–503 (2009) Kim, J.S., Quang, D.T.: Calixarene-derived fluorescent probes. Chem. Rev. 107, 3780–3799 (2007) Lee, M.H., Quang, D.T., Jung, H.S., Yoon, J., Lee, C.H., Kim, J.S.: Ion-induced FRET on–off in fluorescent calix[4]arene. J. Org. Chem. 72, 4242–4245 (2007) Othman, A.B., Lee, J.W., Wu, J.S., Kim, J.S., Abidi, R., Thuéry, P., Strub, J.M., Dorsselaer, A.V., Vicens, J.: Calix[4]arene-based, Hg2+-induced intramolecular fluorescence resonance energy transfer chemosensor. J. Org. Chem. 72, 7634–7640 (2007) Yuan, M.J., Zhou, W.D., Liu, X.F., Zhu, M., Li, J.B., Yin, X.D., Zheng, H.Y., Zuo, Z.C., Ouyang, C.B., Liu, H.B., Li, Y.L., Zhu, D.B.: A multianalyte chemosensor on a single molecule: promising structure for an integrated logic gate. J. Org. Chem. 73, 5008–5014 (2008) Kumar, R., Bhalla, V., Kumar, M.: Cu2+ and CN−-selective fluorogenic sensors based on pyrene-appended thiacalix[4]arenas. Tetrahedron 64, 8095–8101 (2008) Jung, H.S., Kim, H.J., Vicens, J., Kim, J.S.: A new fluorescent chemosensor for F− based on inhibition of excited-state intramolecular proton transfer. Tetrahedron Lett. 50, 983–987 (2009) Matsumoto, H., Nishio, S., Takeshita, M., Shinkai, S.: Syntheses and ion selectivities of tris-amide derivatives of hexahomotrioxacalix[3]arene remarkably large metal template effect on the ratio of cone vs partial-cone conformers. Tetrahedron 51, 4647–4654 (1995) Tsubaki, K., Otsubo, T., Tanaka, K., Fuji, K.: Stepwise construction of some hexahomooxacalix[3]arenes and their conformations in solid state. J. Org. Chem. 63, 3260–3265 (1998) Anthoni, U., Christophersen, C., Nielsen, P., Puschl, A., Schaumburg, K.: Structure of red and orange fluorescein. Struct. Chem. 3, 161–165 (1995) Demas, J.N., Crosby, G.A.: The measurement of photoluminescence quantum yields. J. Phys. Chem. 75, 991–1023 (1971) Dujols, V., Ford, F., Czarnik, A.W.: A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc. 119, 7386–7387 (1997) Yang, Y.K., Yook, K.J., Tae, J.: A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc. 127, 16760–16761 (2005) Wu, J.S., Hwang, I.C., Kim, K.S., Kim, J.S.: Rhodamine-based Hg2+ selective chemodosimeter in aqueous solution: fluorescent OFF–ON. Org. Lett. 9, 907–910 (2007) Yamato, T., Zhang, F.L., Tsuzuki, H., Miura, Y.: Synthesis and inclusion properties of C3-symmetrically capped hexahomotrioxacalix[3]arene with ester groups on the lower rim. Eur. J. Org. Chem. 2001, 1069–1075 (2001) Kwon, J.Y., Jang, Y.J., Lee, Y.J., Kim, K.M., Seo, M.S., Nam, W., Yoon, J.: A highly selective fluorescent chemosensor for Pb2+. J. Am. Chem. Soc. 127, 10107–10111 (2005) Zhang, X., Shiraishi, Y., Hirai, T.: A new rhodamine-based fluorescent chemosensor for transition metal cations synthesized by one-step facile condensation. Tetrahedron Lett. 48, 5455–5459 (2007)