New era of synchrotron radiation: fourth-generation storage ring

Sung‐Hwan Shin1
1Accelerator Division, PLS-II, Pohang Accelerator Laboratory, Pohang, Kyungbuk, 37673, Korea

Tóm tắt

AbstractThere had been remarkable progress in developing third-generation electron storage rings as the main sources of very bright photon beams. Fourth-generation storage rings based on the multi-bend achromat lattice concept may be able to surpass the brightness and coherence that are attained using present third-generation storage rings. In this paper, we survey ongoing work around the world to develop concepts and designs for fourth-generation electron storage rings.

Từ khóa


Tài liệu tham khảo

SuperB workshop, https://indico.cern.ch/event/133199/contributions/125605/

M. Borland et al., J Synchrotron Radiat 21, 912 (2014)

R. Chasman, G.K. Green, E.M. Rowe, IEEE Trans Nucl Sci 22(3) (1975)

A. Jackson, Particle Accelerator. 22, 111 (1987)

D. Einfeld, M. Plesko, J. Schaper, J Synchrotron Radiat 21, 856 (2014)

L. Liu, N. Milas, A.H.C. Mukai, X.R. Resende, A.R.D. Rodriguet, F.H. Sa, Proc of IPAC, 1874 (2013)

ESRF-EBS introduction, http://indico.psi.ch/conferenceDisplay.py?confId=5589.

L. Emery, M. Borland, Proc of PAC, 200 (1999)

H.A. Padmore, ALS Light Source Note LSBL-486. September 22 (1998)

D.-E. Kim et al., J Korean Phys Soc 69(6), 903 (2016)

EPICS, https://epics.anl.gov.

H. Tanaka, Proc. of the NANOBEAM2005, the 36th ICFA Advanced Beam Dynamics Workshop, Uji Campus, Kyoto University, p. 12 (2005).

M. Boge, et al., Proc. of PAC2005, p. 1584 (2005).

Francesca Curbis, et al., Proc. of FEL2014, p.549 (2014)

D. Einfeld and M. Plesko, Proc. of SPIE, p.201 (1993).

D. Einfeld and M. Plesko, Nucl. Instrum. Methods Phys. Res. A, 335, p. 402 (1993).

A. Wolski, Proc. of the CAS-CERN Accelerator School, CERN-2014-009, p. 245 (2014).

C. Steier, et al., Proc. of IPAC2014, p. 567 (2014).

MAX IV Detailed Design Report, https://www.maxiv.lu.se/accelerators-beamlines/accelerators/accelerator-documentation/max-iv-ddr/.

L. Liu, N. Milas, A. H. C. Mukai, X. R. Resende, A. R. D. Rodriguet, and F. H. Sa, Proc. of IPAC2013, p.1874 (2013)

ESRF-EBS: The Extremely Brilliant Source Project, http://indico.psi.ch/conferenceDisplay.py?confId=5589.

APS Upgrade introduction, https://www.aps.anl.gov/ APSUpgrade.

C. Steier et al., Proc. of IPAC 2016, p. 2956 (2016).

HEPS introduction, http://english.ihep.cas.cn/heps/.

Riccardo Bartolini, Overview of ongoing fourth-generation light source projects worldwide, https://www.maxiv.lu.se/news/7th-dlsr-2021/

Diamond-II introduction, https://www.diamond.ac.uk/Home/About/Vision/Diamond-II.html

V. Sajaev, Phys Rev AB 22, 040102 (2019)

C. Herbeaux, N. Bechu, J-M. Filhol, Proc. of EPAC08, p. 3696 (2008).

M. Grabski, E. Al-Dmour, J Synchrotron Radiat 28, 718 (2021)

R. M. Seraphim, et al., Proc. of IPAC2015, p. 2744 (2015).

A. Anders, et al., “Non-evaporative getter (NEG) coatings for ultrahigh vacuum in very narrow chambers”, 80th IUVSTA (2016)

E. Belli et al., Phys Rev AB 21, 111002 (2018)

Brian Norsk Jensen, MAX-IV stability task force update, Workshop on Ambient ground motion and vibration suppression for low emittance storage ring, Beijing 11 December (2017).

A. Xiao, M. Borland, and C. Yao, Proc. of PAC2013, p. 1076 (2013).

P. Kuske, Mastering challenges of the injection into low emittance rings, ARIES-TWIIS, 3rd April (2019)

G. Xu, On-axis injection scheme for HEPS, ARIES-TWIIS, 3rd April (2019)

A. Streun, Summary present machines / beam dynamics, ARIES-TWIIS, 3rd April (2019)

TAKATA, MASAKI, et al., The Next Generation 3GeV Synchrotron Radiation Facility Project in Japan. AAPPS Bull 29, 5 (2019)

ZHANG YH. “Mass Measurements of Short-lived Nuclides at the Heavy-ion Storage Ring in Lanzhou.” AAPPS Bull 29.5 (2019)

H. ZHOU, Construction of the High Intensity Heavy-ion Accelerator Facility (HIAF). AAPPS Bull 29, 2 (2019)

Spring-8-II conceptual design report. http://rsc.riken.jp/eng/index.html.

D-E. Kim, et al., Journal of the Korean Physical Society, Vol. 78, 467 (2021).