New diarylsulfonamide inhibitors of Leishmania infantum amastigotes

Myriam González1,2,3, Pedro José Alcolea4, Raquel Álvarez1,2,3, Manuel Medarde1,2,3, Vicente Larraga4, Rafael Peláez1,2,3
1Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
2Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
3Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
4Laboratorio de Parasitología Molecular, Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain

Tài liệu tham khảo

Abu Ammar, 2019, Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis, Drug Deliv. Transl. Res., 9, 76, 10.1007/s13346-018-00603-0 Alcolea, 2010, Transcriptomics throughout the life cycle of Leishmania infantum: high down-regulation rate in the amastigote stage, Int. J. Parasitol., 40, 1497, 10.1016/j.ijpara.2010.05.013 Alcolea, 2014, Stage-specific differential gene expression in Leishmania infantum: from the foregut of Phlebotomus perniciosus to the human phagocyte, BMC Genom., 15, 10.1186/1471-2164-15-849 Alcolea, 2016, Differential protein abundance in promastigotes of nitric oxide-sensitive and resistant Leishmania chagasi strains, Proteonomics Clin. Appl., 10, 1132, 10.1002/prca.201600054 Almeida, 2004, Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome, Mol. Biochem. Parasitol., 136, 87, 10.1016/j.molbiopara.2004.03.004 Alvar, 2012, Leishmaniasis worldwide and global estimates of its incidence, PloS One, 10.1371/journal.pone.0035671 Álvarez, 2013, Endowing indole-based tubulin inhibitors with an anchor for derivatization: highly potent 3-substituted indolephenstatins and indoleisocombretastatins, J. Med. Chem., 56, 2813, 10.1021/jm3015603 Alves, 2018, Recent development of visceral leishmaniasis treatments: successes, pitfalls, and perspectives, Clin. Microbiol. Rev., 10.1128/CMR.00048-18 Arce, 2013 Bateman, 2019, UniProt: a worldwide hub of protein knowledge, Nucleic Acids Res., 47, D506, 10.1093/nar/gky1049 Berman, 2003, Announcing the worldwide protein Data Bank, Nat. Struct. Biol., 10.1038/nsb1203-980 Berthold, 2007, KNIME: the konstanz information miner, 319 Daina, 2017, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7, 10.1038/srep42717 De Muylder, 2011, A screen against leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit, PLoS Neglected Trop. Dis., 5, 10.1371/journal.pntd.0001253 De Rycker, 2018, Challenges and recent progress in drug discovery for tropical diseases, Nature, 10.1038/s41586-018-0327-4 Dostál, 2014 Drews, 2000, Drug discovery: a historical perspective, Science, 80– Dumontet, 2010, Microtubule-binding agents: a dynamic field of cancer therapeutics, Nat. Rev. Drug Discov. Escudero-Martínez, 2017, Antileishmanial activity and tubulin polymerization inhibition of podophyllotoxin derivatives on Leishmania infantum, Int. J. Parasitol. Drugs Drug Resist., 7, 272, 10.1016/j.ijpddr.2017.06.003 Forli, 2016, Computational protein-ligand docking and virtual drug screening with the AutoDock suite, Nat. Protoc., 11, 905, 10.1038/nprot.2016.051 Furtado, 2016, Benzimidazole resistance in helminths: from problem to diagnosis, Acta Trop., 10.1016/j.actatropica.2016.06.021 Garcia-Perez, 2017, JADOPPT: java based AutoDock preparing and processing tool, Bioinformatics, 33, 583, 10.1093/bioinformatics/btw677 Jain, 2018, Molecular targets and pathways for the treatment of visceral leishmaniasis, Drug Discov. Today, 10.1016/j.drudis.2017.09.006 Jiménez, 2014, Could wild rabbits (Oryctolagus cuniculus) be reservoirs for Leishmania infantum in the focus of Madrid, Spain?, Vet. Parasitol., 202, 296, 10.1016/j.vetpar.2014.03.027 Jordan, 1998, Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle, Med. Res. Rev., 18, 259, 10.1002/(SICI)1098-1128(199807)18:4<259::AID-MED3>3.0.CO;2-U Korb, 2009, Empirical scoring functions for advanced Protein-Ligand docking with PLANTS, J. Chem. Inf. Model., 49, 84, 10.1021/ci800298z Lacey, 1990, Mode of action of benzimidazoles, Parasitol. Today, 6, 112, 10.1016/0169-4758(90)90227-U Larkin, 2007, Clustal W and clustal X version 2.0, Bioinformatics, 23, 2947, 10.1093/bioinformatics/btm404 Laurence, 2009, The pKBHX database: toward a better understanding of hydrogen-bond basicity for medicinal chemists, J. Med. Chem., 10.1021/jm801331y Légaré, 2001, The leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase, J. Biol. Chem., 276, 26301, 10.1074/jbc.M102351200 Leifso, 2007, Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed, Mol. Biochem. Parasitol., 152, 35, 10.1016/j.molbiopara.2006.11.009 Luis, 2013, Comparative analyses of the β-tubulin gene and molecular modeling reveal molecular insight into the colchicine resistance in kinetoplastids organisms, BioMed Res. Int., 843748 Marquis, 2005, Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania, Mol. Microbiol., 57, 1690, 10.1111/j.1365-2958.2005.04782.x Marvin, 2017, vol. 8 Massarotti, 2012, The tubulin colchicine domain: a molecular modeling perspective, ChemMedChem, 10.1002/cmdc.201100361 Mbongo, 1998, Mechanism of amphotericin B resistance in Leishmania donovani promastigotes, Antimicrob. Agents Chemother., 42, 352, 10.1128/AAC.42.2.352 Molina, 2012, The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain, Vet. Parasitol., 190, 268, 10.1016/j.vetpar.2012.05.006 Mondelaers, 2016, Genomic and molecular characterization of miltefosine resistance in leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes, PloS One, 11, 10.1371/journal.pone.0154101 Montecinos-Franjola, 2019, All tubulins are not alike: heterodimer dissociation differs among different biological sources, J. Biol. Chem., 294, 10315, 10.1074/jbc.RA119.007973 Monzote, 2009, Current treatment of leishmaniasis: a review, Open Antimicrob. Agents J. Nagle, 2014, Recent developments in drug discovery for leishmaniasis and human african trypanosomiasis, Chem. Rev., 10.1021/cr500365f OpenEye Scientific Software, 2019 Pérez-Victoria, 2003, Functional cloning of the miltefosine transporter: a novel p-type phospholipid translocase from leishmania involved in drug resistance, J. Biol. Chem., 278, 49965, 10.1074/jbc.M308352200 Pérez-Victoria, 2006, Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use, Drug Resist. Updates, 9, 26, 10.1016/j.drup.2006.04.001 Perlovich, 2014, Impact of sulfonamide structure on solubility and transfer processes in biologically relevant solvents, J. Chem. Eng. Data, 59, 4217, 10.1021/je500918t Pettersen, 2004, UCSF Chimera-A visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084 Ponte-Sucre, 2017, Drug resistance and treatment failure in leishmaniasis: a 21st century challenge, PLoS Neglected Trop. Dis., 10.1371/journal.pntd.0006052 Rama, 2015, A comprehensive review of patented antileishmanial agents, Pharm. Pat. Anal., 10.4155/ppa.14.55 Rijal, 2013, Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance, Clin. Infect. Dis., 56, 1530, 10.1093/cid/cit102 Rochette, 2009, Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum, Mol. Biochem. Parasitol., 165, 32, 10.1016/j.molbiopara.2008.12.012 Šali, 1993, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol., 234, 779, 10.1006/jmbi.1993.1626 Scudiero, 1988, Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines, Canc. Res., 48, 4827 Sinclair, 2019, More than microtubules: the structure and function of the subpellicular array in trypanosomatids, Trends Parasitol., 10.1016/j.pt.2019.07.008 Sundar, 2002, Oral miltefosine for Indian visceral leishmaniasis, N. Engl. J. Med., 347, 1739, 10.1056/NEJMoa021556 Sundar, 2007, Injectable paromomycin for visceral leishmaniasis in India, N. Engl. J. Med., 356, 2571, 10.1056/NEJMoa066536 Sundar, 2005, Availability of miltefosine for the treatment of kala-azar in India, Bull. World Health Organ., 83, 394 Sunter, 2017, Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding, Open Biol, 10.1098/rsob.170165 Tiuman, 2011, Recent advances in leishmaniasis treatment, Int. J. Infect. Dis., 10.1016/j.ijid.2011.03.021 Vandermeulen, 2006, Encapsulation of amphotericin B in poly(ethylene glycol)-block-poly(ε- caprolactone-co-trimethylenecarbonate) polymeric micelles, Int. J. Pharm., 309, 234, 10.1016/j.ijpharm.2005.11.031 Vicente‐Blázquez, 2019, Antitubulin sulfonamides: the successful combination of an established drug class and a multifaceted target, Med. Res. Rev., 39, 775, 10.1002/med.21541 Zhang, 2018, Synthesis, characterization, and antileishmanial activity of neutral N-heterocyclic carbenes gold(I) complexes, Eur. J. Med. Chem., 143, 1635, 10.1016/j.ejmech.2017.10.060 Zulfiqar, 2017, Leishmaniasis drug discovery: recent progress and challenges in assay development, Drug Discov. Today, 10.1016/j.drudis.2017.06.004