New developments in adipogenesis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rosen, 2006, Adipocytes as regulators of energy balance and glucose homeostasis, Nature, 444, 847, 10.1038/nature05483
Farmer, 2008, Molecular determinants of brown adipocyte formation and function, Genes Dev., 22, 1269, 10.1101/gad.1681308
Trayhurn, 2005, Endocrine and signalling role of adipose tissue: new perspectives on fat, Acta Physiol. Scand., 184, 285, 10.1111/j.1365-201X.2005.01468.x
Tontonoz, 2008, Fat and beyond: the diverse biology of PPARγ, Annu. Rev. Biochem., 77, 289, 10.1146/annurev.biochem.77.061307.091829
Zhu, 1995, Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPARγ) gene: alternative promoter use and different splicing yield two mPPARγ isoforms, Proc. Natl. Acad. Sci. U. S. A., 92, 7921, 10.1073/pnas.92.17.7921
Vidal-Puig, 1996, Regulation of PPAR gamma gene expression by nutrition and obesity in rodents, J. Clin. Invest., 97, 2553, 10.1172/JCI118703
Willson, 2000, The PPARs: from orphan receptors to drug discovery, J. Med. Chem., 43, 527, 10.1021/jm990554g
Bell-Parikh, 2003, Biosynthesis of 15-deoxy-delta12, 14-PGJ2 and the ligation of PPARγ. J. Clin. Invest., 112, 945, 10.1172/JCI200318012
Chandra, V. et al. Structure of the intact PPAR-gamma-RXR-alpha nuclear receptor complex on DNA. Nature. (in press)
Perera, 2006, Identification of novel PPARγ target genes in primary human adipocytes, Gene, 369, 90, 10.1016/j.gene.2005.10.021
Sears, 2007, Selective modulation of promoter recruitment and transcriptional activity of PPARγ, Biochem. Biophys. Res. Commun., 364, 515, 10.1016/j.bbrc.2007.10.057
Nakachi, 2008, Identification of novel PPARγ target genes by integrated analysis of ChIP-on-chip and microarray expression data during adipocyte differentiation, Biochem. Biophys. Res. Commun., 372, 362, 10.1016/j.bbrc.2008.05.037
Lefterova, 2008, PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale, Genes Dev., 22, 2941, 10.1101/gad.1709008
Nielsen, 2008, Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis, Genes Dev., 22, 2953, 10.1101/gad.501108
Guan, 2005, Corepressors selectively control the transcriptional activity of PPARγ in adipocytes, Genes Dev., 19, 453, 10.1101/gad.1263305
Chui, 2005, PPARγ regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1, J. Clin. Invest., 115, 2244, 10.1172/JCI24130
Yu, 2005, The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor gamma transcriptional activity and repress 3T3-L1 adipogenesis, J. Biol. Chem., 280, 13600, 10.1074/jbc.M409468200
Louet, 2007, Coregulators in adipogenesis: what could we learn from the SRC (p160) coactivator family?, Cell Cycle, 6, 2448, 10.4161/cc.6.20.4777
Picard, 2004, Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ, Nature, 429, 771, 10.1038/nature02583
Jing, 2007, SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation, Cell Metab., 6, 105, 10.1016/j.cmet.2007.07.003
White, 2008, Role of RIP140 in metabolic tissues: connections to disease, FEBS Lett., 582, 39, 10.1016/j.febslet.2007.11.017
Puigserver, 2005, Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α, Int J Obes (Lond), 29, S5, 10.1038/sj.ijo.0802905
Tang, 2003, Mitotic clonal expansion: a synchronous process required for adipogenesis, Proc. Natl. Acad. Sci. U. S. A., 100, 44, 10.1073/pnas.0137044100
Gray, 2005, Mouse models of PPAR-γ deficiency: dissecting PPAR-γ’s role in metabolic homoeostasis, Biochem. Soc. Trans., 33, 1053, 10.1042/BST20051053
Barak, 1999, PPAR gamma is required for placental, cardiac, and adipose tissue development, Mol. Cell, 4, 585, 10.1016/S1097-2765(00)80209-9
Rosen, 1999, PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro, Mol. Cell, 4, 611, 10.1016/S1097-2765(00)80211-7
Koutnikova, 2003, Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice, Proc. Natl. Acad. Sci. U. S. A., 100, 14457, 10.1073/pnas.2336090100
He, 2003, Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle, Proc. Natl. Acad. Sci. U. S. A., 100, 15712, 10.1073/pnas.2536828100
Jones, 2005, Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance, Proc. Natl. Acad. Sci. U. S. A., 102, 6207, 10.1073/pnas.0306743102
Medina-Gomez, 2005, The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-gamma2 isoform, Diabetes, 54, 1706, 10.2337/diabetes.54.6.1706
Zhang, 2004, Selective disruption of PPARγ2 impairs the development of adipose tissue and insulin sensitivity, Proc. Natl. Acad. Sci. U. S. A., 101, 10703, 10.1073/pnas.0403652101
Imai, 2004, Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse, Proc. Natl. Acad. Sci. U. S. A., 101, 4543, 10.1073/pnas.0400356101
Freedman, 2005, A dominant negative peroxisome proliferator-activated receptor-gamma knock-in mouse exhibits features of the metabolic syndrome, J. Biol. Chem., 280, 17118, 10.1074/jbc.M407539200
Tsai, 2004, Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARγ, J. Clin. Invest., 114, 240, 10.1172/JCI200420964
Tsai, 2005, PPARγ: a critical determinant of body fat distribution in humans and mice, Trends Cardiovasc. Med., 15, 81, 10.1016/j.tcm.2005.04.002
Agostini, 2006, Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance, Cell Metab., 4, 303, 10.1016/j.cmet.2006.09.003
Otto, 2005, Adipose development: from stem cell to adipocyte, Crit. Rev. Biochem. Mol. Biol., 40, 229, 10.1080/10409230591008189
Wang, 1995, Impaired energy homeostasis in C/EBP alpha knockout mice, Science, 269, 1108, 10.1126/science.7652557
Linhart, 2001, C/EBPα is required for differentiation of white, but not brown, adipose tissue, Proc. Natl. Acad. Sci. U. S. A., 98, 12532, 10.1073/pnas.211416898
Yang, 2005, Metabolic response of mice to a postnatal ablation of CCAAT/enhancer-binding protein alpha, J. Biol. Chem., 280, 38689, 10.1074/jbc.M503486200
Tanaka, 1997, Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene, EMBO J., 16, 7432, 10.1093/emboj/16.24.7432
Wu, 1999, Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity, Mol. Cell, 3, 151, 10.1016/S1097-2765(00)80306-8
Rosen, 2002, C/EBPα induces adipogenesis through PPARγ: a unified pathway, Genes Dev., 16, 22, 10.1101/gad.948702
MacDougald, 1995, Insulin regulates transcription of the CCAAT/enhancer binding protein (C/EBP) alpha, beta, and delta genes in fully-differentiated 3T3-L1 adipocytes, J. Biol. Chem., 270, 647, 10.1074/jbc.270.2.647
Farmer, 2006, Transcriptional control of adipocyte formation, Cell Metab., 4, 263, 10.1016/j.cmet.2006.07.001
Clevers, 2006, Wnt/β-catenin signaling in development and disease, Cell, 127, 469, 10.1016/j.cell.2006.10.018
Ross, 2000, Inhibition of adipogenesis by Wnt signaling, Science, 289, 950, 10.1126/science.289.5481.950
Arango, 2005, Conditional deletion of β-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium, Dev. Biol., 288, 276, 10.1016/j.ydbio.2005.09.045
Moldes, 2003, Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis, Biochem. J., 376, 607, 10.1042/bj20030426
Liu, 2004, Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3β phosphorylation-defective mutant of β-catenin inhibits expression of a subset of adipogenic genes, J. Biol. Chem., 279, 45020, 10.1074/jbc.M407050200
Liu, 2006, Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin, Mol. Cell. Biol., 26, 5827, 10.1128/MCB.00441-06
Bennett, 2005, Regulation of osteoblastogenesis and bone mass by Wnt10b, Proc. Natl. Acad. Sci. U. S. A., 102, 3324, 10.1073/pnas.0408742102
Longo, 2004, Wnt10b inhibits development of white and brown adipose tissues, J. Biol. Chem., 279, 35503, 10.1074/jbc.M402937200
Wright, 2007, Wnt10b inhibits obesity in ob/ob and agouti mice, Diabetes, 56, 295, 10.2337/db06-1339
Christodoulides, 2006, WNT10B mutations in human obesity, Diabetologia, 49, 678, 10.1007/s00125-006-0144-4
Kang, 2007, Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma, J. Biol. Chem., 282, 14515, 10.1074/jbc.M700030200
Takada, 2007, A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation, Nat. Cell Biol., 9, 1273, 10.1038/ncb1647
Reichert, 1999, Analysis of cell cycle arrest in adipocyte differentiation, Oncogene, 18, 459, 10.1038/sj.onc.1202308
Tang, 2003, CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis, Proc. Natl. Acad. Sci. U. S. A., 100, 850, 10.1073/pnas.0337434100
Sarruf, 2005, Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma, Mol. Cell. Biol., 25, 9985, 10.1128/MCB.25.22.9985-9995.2005
Fu, 2005, Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment, J. Biol. Chem., 280, 16934, 10.1074/jbc.M500403200
Abella, 2005, Cdk4 promotes adipogenesis through PPARγ activation, Cell Metab., 2, 239, 10.1016/j.cmet.2005.09.003
Fajas, 2002, E2Fs regulate adipocyte differentiation, Dev. Cell, 3, 39, 10.1016/S1534-5807(02)00190-9
Porse, 2001, E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo, Cell, 107, 247, 10.1016/S0092-8674(01)00516-5
Bracken, 2004, E2F target genes: unraveling the biology, Trends Biochem. Sci., 29, 409, 10.1016/j.tibs.2004.06.006
Hansen, 2004, Novel function of the retinoblastoma protein in fat: regulation of white versus brown adipocyte differentiation, Cell Cycle, 3, 774, 10.4161/cc.3.6.908
Classon, 2000, Opposing roles of pRB and p107 in adipocyte differentiation, Proc. Natl. Acad. Sci. U. S. A., 97, 10826, 10.1073/pnas.190343597
Scime, 2005, Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1α, Cell Metab., 2, 283, 10.1016/j.cmet.2005.10.002
Hansen, 2004, Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation, Proc. Natl. Acad. Sci. U. S. A., 101, 4112, 10.1073/pnas.0301964101
Chen, 1996, Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs, Genes Dev., 10, 2794, 10.1101/gad.10.21.2794
Fajas, 2002, The retinoblastoma-histone deacetylase 3 complex inhibits PPARγ and adipocyte differentiation, Dev. Cell, 3, 903, 10.1016/S1534-5807(02)00360-X
Johnson, 2005, Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors, J. Cell Sci., 118, 2545, 10.1242/jcs.02459
Altiok, 1997, PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A, Genes Dev., 11, 1987, 10.1101/gad.11.15.1987
Morrison, 1999, Role of PPARγ in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis, J. Biol. Chem., 274, 17088, 10.1074/jbc.274.24.17088
Timchenko, 1999, E2F/p107 and E2F/p130 complexes are regulated by C/EBPα in 3T3-L1 adipocytes, Nucleic Acids Res., 27, 3621, 10.1093/nar/27.17.3621
Kaczynski, 2003, Sp1- and Kruppel-like transcription factors, Genome Biol., 4, 206, 10.1186/gb-2003-4-2-206
Mori, 2005, Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis, J. Biol. Chem., 280, 12867, 10.1074/jbc.M410515200
Sue, 2008, Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis, Mol. Cell. Biol., 28, 3967, 10.1128/MCB.01942-07
Birsoy, 2008, Transcriptional regulation of adipogenesis by KLF4, Cell Metab., 7, 339, 10.1016/j.cmet.2008.02.001
Chen, 2005, Krox20 stimulates adipogenesis via C/EBPβ-dependent and -independent mechanisms, Cell Metab., 1, 93, 10.1016/j.cmet.2004.12.009
Li, 2005, Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1, J. Biol. Chem., 280, 26941, 10.1074/jbc.M500463200
Oishi, 2005, Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation, Cell Metab., 1, 27, 10.1016/j.cmet.2004.11.005
Banerjee, 2003, The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis, J. Biol. Chem., 278, 2581, 10.1074/jbc.M210859200
Wu, 2005, The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes, Biochemistry, 44, 11098, 10.1021/bi050166i
Rosen, 2006, Adipocyte differentiation from the inside out, Nat. Rev. Mol. Cell Biol., 7, 885, 10.1038/nrm2066
Wang, 2008, Bifunctional role of Rev-erbalpha in adipocyte differentiation, Mol. Cell. Biol., 28, 2213, 10.1128/MCB.01608-07
Shimba, 2005, Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis, Proc. Natl. Acad. Sci. U. S. A., 102, 12071, 10.1073/pnas.0502383102
Eguchi, 2008, Interferon regulatory factors are transcriptional regulators of adipogenesis, Cell Metab., 7, 86, 10.1016/j.cmet.2007.11.002
Jimenez, 2007, Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade, Mol. Cell. Biol., 27, 743, 10.1128/MCB.01557-06
Akerblad, 2005, Gene expression analysis suggests that EBF-1 and PPARγ2 induce adipogenesis of NIH-3T3 cells with similar efficiency and kinetics, Physiol. Genomics, 23, 206, 10.1152/physiolgenomics.00015.2005
Seale, 2008, PRDM16 controls a brown fat/skeletal muscle switch, Nature, 454, 961, 10.1038/nature07182
Timmons, 2007, Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages, Proc. Natl. Acad. Sci. U. S. A., 104, 4401, 10.1073/pnas.0610615104
Almind, 2007, Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice, Proc. Natl. Acad. Sci. U. S. A., 104, 2366, 10.1073/pnas.0610416104
Seale, 2007, Transcriptional control of brown fat determination by PRDM16, Cell Metab., 6, 38, 10.1016/j.cmet.2007.06.001