New developments in adipogenesis

Trends in Endocrinology & Metabolism - Tập 20 Số 3 - Trang 107-114 - 2009
Martina I. Lefterova1, Mitchell A. Lazar1
1Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rosen, 2006, Adipocytes as regulators of energy balance and glucose homeostasis, Nature, 444, 847, 10.1038/nature05483

Farmer, 2008, Molecular determinants of brown adipocyte formation and function, Genes Dev., 22, 1269, 10.1101/gad.1681308

Trayhurn, 2005, Endocrine and signalling role of adipose tissue: new perspectives on fat, Acta Physiol. Scand., 184, 285, 10.1111/j.1365-201X.2005.01468.x

Lehrke, 2005, The many faces of PPARγ, Cell, 123, 993, 10.1016/j.cell.2005.11.026

Tontonoz, 2008, Fat and beyond: the diverse biology of PPARγ, Annu. Rev. Biochem., 77, 289, 10.1146/annurev.biochem.77.061307.091829

Zhu, 1995, Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPARγ) gene: alternative promoter use and different splicing yield two mPPARγ isoforms, Proc. Natl. Acad. Sci. U. S. A., 92, 7921, 10.1073/pnas.92.17.7921

Vidal-Puig, 1996, Regulation of PPAR gamma gene expression by nutrition and obesity in rodents, J. Clin. Invest., 97, 2553, 10.1172/JCI118703

Willson, 2000, The PPARs: from orphan receptors to drug discovery, J. Med. Chem., 43, 527, 10.1021/jm990554g

Bell-Parikh, 2003, Biosynthesis of 15-deoxy-delta12, 14-PGJ2 and the ligation of PPARγ. J. Clin. Invest., 112, 945, 10.1172/JCI200318012

Chandra, V. et al. Structure of the intact PPAR-gamma-RXR-alpha nuclear receptor complex on DNA. Nature. (in press)

Perera, 2006, Identification of novel PPARγ target genes in primary human adipocytes, Gene, 369, 90, 10.1016/j.gene.2005.10.021

Sears, 2007, Selective modulation of promoter recruitment and transcriptional activity of PPARγ, Biochem. Biophys. Res. Commun., 364, 515, 10.1016/j.bbrc.2007.10.057

Nakachi, 2008, Identification of novel PPARγ target genes by integrated analysis of ChIP-on-chip and microarray expression data during adipocyte differentiation, Biochem. Biophys. Res. Commun., 372, 362, 10.1016/j.bbrc.2008.05.037

Lefterova, 2008, PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale, Genes Dev., 22, 2941, 10.1101/gad.1709008

Nielsen, 2008, Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis, Genes Dev., 22, 2953, 10.1101/gad.501108

Guan, 2005, Corepressors selectively control the transcriptional activity of PPARγ in adipocytes, Genes Dev., 19, 453, 10.1101/gad.1263305

Chui, 2005, PPARγ regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1, J. Clin. Invest., 115, 2244, 10.1172/JCI24130

Yu, 2005, The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor gamma transcriptional activity and repress 3T3-L1 adipogenesis, J. Biol. Chem., 280, 13600, 10.1074/jbc.M409468200

Louet, 2007, Coregulators in adipogenesis: what could we learn from the SRC (p160) coactivator family?, Cell Cycle, 6, 2448, 10.4161/cc.6.20.4777

Picard, 2004, Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ, Nature, 429, 771, 10.1038/nature02583

Jing, 2007, SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation, Cell Metab., 6, 105, 10.1016/j.cmet.2007.07.003

White, 2008, Role of RIP140 in metabolic tissues: connections to disease, FEBS Lett., 582, 39, 10.1016/j.febslet.2007.11.017

Puigserver, 2005, Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α, Int J Obes (Lond), 29, S5, 10.1038/sj.ijo.0802905

Tang, 2003, Mitotic clonal expansion: a synchronous process required for adipogenesis, Proc. Natl. Acad. Sci. U. S. A., 100, 44, 10.1073/pnas.0137044100

Gray, 2005, Mouse models of PPAR-γ deficiency: dissecting PPAR-γ’s role in metabolic homoeostasis, Biochem. Soc. Trans., 33, 1053, 10.1042/BST20051053

Barak, 1999, PPAR gamma is required for placental, cardiac, and adipose tissue development, Mol. Cell, 4, 585, 10.1016/S1097-2765(00)80209-9

Rosen, 1999, PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro, Mol. Cell, 4, 611, 10.1016/S1097-2765(00)80211-7

Koutnikova, 2003, Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice, Proc. Natl. Acad. Sci. U. S. A., 100, 14457, 10.1073/pnas.2336090100

He, 2003, Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle, Proc. Natl. Acad. Sci. U. S. A., 100, 15712, 10.1073/pnas.2536828100

Jones, 2005, Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance, Proc. Natl. Acad. Sci. U. S. A., 102, 6207, 10.1073/pnas.0306743102

Medina-Gomez, 2005, The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-gamma2 isoform, Diabetes, 54, 1706, 10.2337/diabetes.54.6.1706

Zhang, 2004, Selective disruption of PPARγ2 impairs the development of adipose tissue and insulin sensitivity, Proc. Natl. Acad. Sci. U. S. A., 101, 10703, 10.1073/pnas.0403652101

Imai, 2004, Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse, Proc. Natl. Acad. Sci. U. S. A., 101, 4543, 10.1073/pnas.0400356101

Freedman, 2005, A dominant negative peroxisome proliferator-activated receptor-gamma knock-in mouse exhibits features of the metabolic syndrome, J. Biol. Chem., 280, 17118, 10.1074/jbc.M407539200

Tsai, 2004, Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARγ, J. Clin. Invest., 114, 240, 10.1172/JCI200420964

Tsai, 2005, PPARγ: a critical determinant of body fat distribution in humans and mice, Trends Cardiovasc. Med., 15, 81, 10.1016/j.tcm.2005.04.002

Agostini, 2006, Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance, Cell Metab., 4, 303, 10.1016/j.cmet.2006.09.003

Otto, 2005, Adipose development: from stem cell to adipocyte, Crit. Rev. Biochem. Mol. Biol., 40, 229, 10.1080/10409230591008189

Wang, 1995, Impaired energy homeostasis in C/EBP alpha knockout mice, Science, 269, 1108, 10.1126/science.7652557

Linhart, 2001, C/EBPα is required for differentiation of white, but not brown, adipose tissue, Proc. Natl. Acad. Sci. U. S. A., 98, 12532, 10.1073/pnas.211416898

Yang, 2005, Metabolic response of mice to a postnatal ablation of CCAAT/enhancer-binding protein alpha, J. Biol. Chem., 280, 38689, 10.1074/jbc.M503486200

Tanaka, 1997, Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene, EMBO J., 16, 7432, 10.1093/emboj/16.24.7432

Wu, 1999, Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity, Mol. Cell, 3, 151, 10.1016/S1097-2765(00)80306-8

Rosen, 2002, C/EBPα induces adipogenesis through PPARγ: a unified pathway, Genes Dev., 16, 22, 10.1101/gad.948702

MacDougald, 1995, Insulin regulates transcription of the CCAAT/enhancer binding protein (C/EBP) alpha, beta, and delta genes in fully-differentiated 3T3-L1 adipocytes, J. Biol. Chem., 270, 647, 10.1074/jbc.270.2.647

Farmer, 2006, Transcriptional control of adipocyte formation, Cell Metab., 4, 263, 10.1016/j.cmet.2006.07.001

Clevers, 2006, Wnt/β-catenin signaling in development and disease, Cell, 127, 469, 10.1016/j.cell.2006.10.018

Ross, 2000, Inhibition of adipogenesis by Wnt signaling, Science, 289, 950, 10.1126/science.289.5481.950

Arango, 2005, Conditional deletion of β-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium, Dev. Biol., 288, 276, 10.1016/j.ydbio.2005.09.045

Moldes, 2003, Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis, Biochem. J., 376, 607, 10.1042/bj20030426

Liu, 2004, Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3β phosphorylation-defective mutant of β-catenin inhibits expression of a subset of adipogenic genes, J. Biol. Chem., 279, 45020, 10.1074/jbc.M407050200

Liu, 2006, Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin, Mol. Cell. Biol., 26, 5827, 10.1128/MCB.00441-06

Bennett, 2005, Regulation of osteoblastogenesis and bone mass by Wnt10b, Proc. Natl. Acad. Sci. U. S. A., 102, 3324, 10.1073/pnas.0408742102

Longo, 2004, Wnt10b inhibits development of white and brown adipose tissues, J. Biol. Chem., 279, 35503, 10.1074/jbc.M402937200

Wright, 2007, Wnt10b inhibits obesity in ob/ob and agouti mice, Diabetes, 56, 295, 10.2337/db06-1339

Christodoulides, 2006, WNT10B mutations in human obesity, Diabetologia, 49, 678, 10.1007/s00125-006-0144-4

Kang, 2007, Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma, J. Biol. Chem., 282, 14515, 10.1074/jbc.M700030200

Takada, 2007, A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation, Nat. Cell Biol., 9, 1273, 10.1038/ncb1647

Reichert, 1999, Analysis of cell cycle arrest in adipocyte differentiation, Oncogene, 18, 459, 10.1038/sj.onc.1202308

Tang, 2003, CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis, Proc. Natl. Acad. Sci. U. S. A., 100, 850, 10.1073/pnas.0337434100

Sarruf, 2005, Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma, Mol. Cell. Biol., 25, 9985, 10.1128/MCB.25.22.9985-9995.2005

Fu, 2005, Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment, J. Biol. Chem., 280, 16934, 10.1074/jbc.M500403200

Abella, 2005, Cdk4 promotes adipogenesis through PPARγ activation, Cell Metab., 2, 239, 10.1016/j.cmet.2005.09.003

Fajas, 2002, E2Fs regulate adipocyte differentiation, Dev. Cell, 3, 39, 10.1016/S1534-5807(02)00190-9

Porse, 2001, E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo, Cell, 107, 247, 10.1016/S0092-8674(01)00516-5

Bracken, 2004, E2F target genes: unraveling the biology, Trends Biochem. Sci., 29, 409, 10.1016/j.tibs.2004.06.006

Hansen, 2004, Novel function of the retinoblastoma protein in fat: regulation of white versus brown adipocyte differentiation, Cell Cycle, 3, 774, 10.4161/cc.3.6.908

Classon, 2000, Opposing roles of pRB and p107 in adipocyte differentiation, Proc. Natl. Acad. Sci. U. S. A., 97, 10826, 10.1073/pnas.190343597

Scime, 2005, Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1α, Cell Metab., 2, 283, 10.1016/j.cmet.2005.10.002

Hansen, 2004, Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation, Proc. Natl. Acad. Sci. U. S. A., 101, 4112, 10.1073/pnas.0301964101

Chen, 1996, Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs, Genes Dev., 10, 2794, 10.1101/gad.10.21.2794

Fajas, 2002, The retinoblastoma-histone deacetylase 3 complex inhibits PPARγ and adipocyte differentiation, Dev. Cell, 3, 903, 10.1016/S1534-5807(02)00360-X

Johnson, 2005, Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors, J. Cell Sci., 118, 2545, 10.1242/jcs.02459

Altiok, 1997, PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A, Genes Dev., 11, 1987, 10.1101/gad.11.15.1987

Morrison, 1999, Role of PPARγ in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis, J. Biol. Chem., 274, 17088, 10.1074/jbc.274.24.17088

Timchenko, 1999, E2F/p107 and E2F/p130 complexes are regulated by C/EBPα in 3T3-L1 adipocytes, Nucleic Acids Res., 27, 3621, 10.1093/nar/27.17.3621

Kaczynski, 2003, Sp1- and Kruppel-like transcription factors, Genome Biol., 4, 206, 10.1186/gb-2003-4-2-206

Mori, 2005, Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis, J. Biol. Chem., 280, 12867, 10.1074/jbc.M410515200

Sue, 2008, Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis, Mol. Cell. Biol., 28, 3967, 10.1128/MCB.01942-07

Birsoy, 2008, Transcriptional regulation of adipogenesis by KLF4, Cell Metab., 7, 339, 10.1016/j.cmet.2008.02.001

Chen, 2005, Krox20 stimulates adipogenesis via C/EBPβ-dependent and -independent mechanisms, Cell Metab., 1, 93, 10.1016/j.cmet.2004.12.009

Li, 2005, Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1, J. Biol. Chem., 280, 26941, 10.1074/jbc.M500463200

Oishi, 2005, Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation, Cell Metab., 1, 27, 10.1016/j.cmet.2004.11.005

Banerjee, 2003, The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis, J. Biol. Chem., 278, 2581, 10.1074/jbc.M210859200

Wu, 2005, The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes, Biochemistry, 44, 11098, 10.1021/bi050166i

Rosen, 2006, Adipocyte differentiation from the inside out, Nat. Rev. Mol. Cell Biol., 7, 885, 10.1038/nrm2066

Wang, 2008, Bifunctional role of Rev-erbalpha in adipocyte differentiation, Mol. Cell. Biol., 28, 2213, 10.1128/MCB.01608-07

Shimba, 2005, Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis, Proc. Natl. Acad. Sci. U. S. A., 102, 12071, 10.1073/pnas.0502383102

Eguchi, 2008, Interferon regulatory factors are transcriptional regulators of adipogenesis, Cell Metab., 7, 86, 10.1016/j.cmet.2007.11.002

Jimenez, 2007, Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade, Mol. Cell. Biol., 27, 743, 10.1128/MCB.01557-06

Akerblad, 2005, Gene expression analysis suggests that EBF-1 and PPARγ2 induce adipogenesis of NIH-3T3 cells with similar efficiency and kinetics, Physiol. Genomics, 23, 206, 10.1152/physiolgenomics.00015.2005

Seale, 2008, PRDM16 controls a brown fat/skeletal muscle switch, Nature, 454, 961, 10.1038/nature07182

Timmons, 2007, Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages, Proc. Natl. Acad. Sci. U. S. A., 104, 4401, 10.1073/pnas.0610615104

Almind, 2007, Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice, Proc. Natl. Acad. Sci. U. S. A., 104, 2366, 10.1073/pnas.0610416104

Seale, 2007, Transcriptional control of brown fat determination by PRDM16, Cell Metab., 6, 38, 10.1016/j.cmet.2007.06.001

Tseng, 2008, New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure, Nature, 454, 1000, 10.1038/nature07221