New cubic self-dual codes of length 54, 60 and 66
Tóm tắt
We study the construction of quasi-cyclic self-dual codes, especially of binary cubic ones. We consider the binary quasi-cyclic codes of length
$$3\ell $$
with the algebraic approach of Ling and Solé (IEEE Trans Inf Theory 47(7):2751–2760, 2001. doi:
10.1109/18.959257
). In particular, we improve the previous results by constructing 1 new binary [54, 27, 10], 6 new [60, 30, 12] and 50 new [66, 33, 12] cubic self-dual codes. We conjecture that there exist no more binary cubic self-dual codes with length 54, 60 and 66.
Tài liệu tham khảo
Bonnecaze, A., Bracco, A.D., Dougherty, S.T., Nochefranca, L.R., Solé, P.: Cubic self-dual binary codes. IEEE Trans. Inf. Theory 49(9), 2253–2259 (2003). doi:10.1109/TIT.2003.815800
Bouyuklieva, S., Östergård, P.R.J.: New constructions of optimal self-dual binary codes of length 54. Des. Codes Cryptogr. 41(1), 101–109 (2006). doi:10.1007/s10623-006-0018-2
Bouyuklieva, S., Yankov, N., Kim, J.L.: Classification of binary self-dual \([48,24,10]\) codes with an automorphism of odd prime order. Finite Fields Appl. 18(6), 1104–1113 (2012). doi:10.1016/j.ffa.2012.08.002
Conway, J.H., Sloane, N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inf. Theory 36(6), 1319–1333 (1990). doi:10.1109/18.59931
Gulliver, T.A., Harada, M.: Weight enumerators of extremal singly-even [60, 30, 12] codes. IEEE Trans. Inf. Theory 42(2), 658–659 (1996). doi:10.1109/18.485739
Han, S., Kim, J.L., Lee, H., Lee, Y.: Construction of quasi-cyclic self-dual codes. Finite Fields Appl. 18(3), 613–633 (2012). doi:10.1016/j.ffa.2011.12.006
Harada, M., Munemasa, A.: Database of self-dual codes. http://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.htm (2017). Accessed 09 Feb 2017
Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory 47(7), 2751–2760 (2001). doi:10.1109/18.959257
Rains, E.M., Sloane, N.J.A.: Self-dual codes. In: Pless, V.S., Huffman, W.C., Brualdi, R.A. (eds.) Handbook of Coding Theory, vol. I, II, pp. 177–294. North-Holland, Amsterdam (1998)