New cubic self-dual codes of length 54, 60 and 66

Springer Science and Business Media LLC - Tập 29 - Trang 303-312 - 2017
Pınar Çomak1, Jon Lark Kim2, Ferruh Özbudak3
1Department of Mathematics, Middle East Technical University, Çankaya, Turkey
2Department of Mathematics, Sogang University, Seoul, South Korea
3Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, Çankaya, Turkey

Tóm tắt

We study the construction of quasi-cyclic self-dual codes, especially of binary cubic ones. We consider the binary quasi-cyclic codes of length $$3\ell $$ with the algebraic approach of Ling and Solé (IEEE Trans Inf Theory 47(7):2751–2760, 2001. doi: 10.1109/18.959257 ). In particular, we improve the previous results by constructing 1 new binary [54, 27, 10], 6 new [60, 30, 12] and 50 new [66, 33, 12] cubic self-dual codes. We conjecture that there exist no more binary cubic self-dual codes with length 54, 60 and 66.

Tài liệu tham khảo

Bonnecaze, A., Bracco, A.D., Dougherty, S.T., Nochefranca, L.R., Solé, P.: Cubic self-dual binary codes. IEEE Trans. Inf. Theory 49(9), 2253–2259 (2003). doi:10.1109/TIT.2003.815800 Bouyuklieva, S., Östergård, P.R.J.: New constructions of optimal self-dual binary codes of length 54. Des. Codes Cryptogr. 41(1), 101–109 (2006). doi:10.1007/s10623-006-0018-2 Bouyuklieva, S., Yankov, N., Kim, J.L.: Classification of binary self-dual \([48,24,10]\) codes with an automorphism of odd prime order. Finite Fields Appl. 18(6), 1104–1113 (2012). doi:10.1016/j.ffa.2012.08.002 Conway, J.H., Sloane, N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inf. Theory 36(6), 1319–1333 (1990). doi:10.1109/18.59931 Gulliver, T.A., Harada, M.: Weight enumerators of extremal singly-even [60, 30, 12] codes. IEEE Trans. Inf. Theory 42(2), 658–659 (1996). doi:10.1109/18.485739 Han, S., Kim, J.L., Lee, H., Lee, Y.: Construction of quasi-cyclic self-dual codes. Finite Fields Appl. 18(3), 613–633 (2012). doi:10.1016/j.ffa.2011.12.006 Harada, M., Munemasa, A.: Database of self-dual codes. http://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.htm (2017). Accessed 09 Feb 2017 Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory 47(7), 2751–2760 (2001). doi:10.1109/18.959257 Rains, E.M., Sloane, N.J.A.: Self-dual codes. In: Pless, V.S., Huffman, W.C., Brualdi, R.A. (eds.) Handbook of Coding Theory, vol. I, II, pp. 177–294. North-Holland, Amsterdam (1998)