New conversion chemistry of CuSO4 as ultra-high-energy cathode material for rechargeable sodium battery

Energy Storage Materials - Tập 24 - Trang 458-466 - 2020
Yongseok Lee1, Chang-Heum Jo1, Jung-Keun Yoo2, Ji Ung Choi1, Wonseok Ko1, Hyunyoung Park1, Jae Hyeon Jo1, Dong Ok Shin3,4, Seung-Taek Myung1, Jongsoon Kim1
1Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
2Carbon Composites Department, Composites Research Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon, Republic of Korea
3Multidisciplinary Sensor Research Group, Electronics and Telecommunications Research Institute (ETRI), Daejeon, 305-700, Republic of Korea
4Department of Advanced Device Engineering, University of Science and Technology (UST), 217 Gajeongno, Yuseong-gu, Daejeon, 305-350, Republic of Korea

Tài liệu tham khảo

Slater, 2013, Sodium-ion batteries, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691 Palomares, 2013, Update on Na-based battery materials. A growing research path, Energy Environ. Sci., 6, 2312, 10.1039/c3ee41031e Larcher, 2015, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7, 19, 10.1038/nchem.2085 Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644 Zheng, 2017, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nat. Energy, 2, 8, 10.1038/nenergy.2017.12 Gruber, 2011, Global lithium availability a constraint for electric vehicles?, J. Ind. Ecol., 15, 760, 10.1111/j.1530-9290.2011.00359.x Vikstrom, 2013, Lithium availability and future production outlooks, Appl. Energy, 110, 252, 10.1016/j.apenergy.2013.04.005 Choi, 2018, Extremely small pyrrhotite Fe7S8 nanocrystals with simultaneous carbon-encapsulation for high-performance Na-ion batteries, Small, 14, 6, 10.1002/smll.201702816 Kim, 2015, Anomalous Jahn-Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries, Energy Environ. Sci., 8, 3325, 10.1039/C5EE01876E Bruce, 2008, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 47, 2930, 10.1002/anie.200702505 Praneetha, 2015, Development of sustainable rapid microwave assisted process for extracting nanoporous Si from earth abundant agricultural residues and their carbon-based nanohybrids for lithium energy storage, Acs. Sustain. Chem. Eng., 3, 224, 10.1021/sc500735a Wu, 2012, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7, 414, 10.1016/j.nantod.2012.08.004 Kim, 2017, New 4V-class and zero-strain cathode material for Na-ion batteries, Chem. Mater., 29, 7826, 10.1021/acs.chemmater.7b02477 Ong, 2011, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials, Energy Environ. Sci., 4, 3680, 10.1039/c1ee01782a Wang, 2013, A superior low-cost cathode for a Na-ion battery, Angew. Chem. Int. Ed., 52, 1964, 10.1002/anie.201206854 Yamada, 2011, Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries, J. Power Sources, 196, 4837, 10.1016/j.jpowsour.2011.01.060 Shakoor, 2012, A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries, J. Mater. Chem., 22, 20535, 10.1039/c2jm33862a Kim, 2015, Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries, Energy Environ. Sci., 8, 540, 10.1039/C4EE03215B Jian, 2014, Atomic structure and kinetics of NASICON NaxV2(PO4)(3) cathode for sodium-ion batteries, Adv. Funct. Mater., 24, 4265, 10.1002/adfm.201400173 Casas-Cabanas, 2012, Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4, J. Mater. Chem., 22, 17421, 10.1039/c2jm33639a Shen, 2016, A P2-NaxCo0.7Mn0.3O2 (x approximate to 1.0) cathode material for Na-ion batteries with superior rate and cycle capability, J. Mater. Chem. A, 4, 12281, 10.1039/C6TA03630A Delacourt, 2005, The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1, Nat. Mater., 4, 254, 10.1038/nmat1335 Hwang, 2017, Sodium-ion batteries: present and future, Chem. Soc. Rev., 46, 3529, 10.1039/C6CS00776G Dai, 2017, Advanced cathode materials for sodium-ion batteries: what determines our choices?, Small Methods, 1, 26, 10.1002/smtd.201700098 Su, 2016, Transition metal oxides for sodium-ion batteries, Energy Storage Materials, 5, 116, 10.1016/j.ensm.2016.06.005 Ni, 2017, Polyanion-Type electrode materials for sodium-ion batteries, Adv. Sci., 4, 24 Qiao, 2015, Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries, Nano Energy, 16, 186, 10.1016/j.nanoen.2015.06.024 Yabuuchi, 2012, P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nat. Mater., 11, 512, 10.1038/nmat3309 Nose, 2013, Na4Co3(PO4)(2)P2O7: a novel storage material for sodium-ion batteries, J. Power Sources, 234, 175, 10.1016/j.jpowsour.2013.01.162 Kim, 2013, Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study, Adv. Funct. Mater., 23, 1147, 10.1002/adfm.201201589 Hwang, 2016, Novel cathode materials for Na-ion batteries composed of spoke-like nanorods of Na[Ni0.61Co0.12Mn0.27 ]O2 assembled in spherical secondary particles, Adv. Funct. Mater., 26, 8083, 10.1002/adfm.201603439 Hwang, 2016, Effect of nickel and iron on structural and electrochemical properties of O3 type layer cathode materials for sodium-ion batteries, J. Power Sources, 324, 106, 10.1016/j.jpowsour.2016.05.064 Zhang, 2016, P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: enhanced properties and mechanisam via graphene connection, Acs. Appl. Mater. Inter., 8, 20650, 10.1021/acsami.6b03944 Singh, 2015, Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2, J. Mater. Chem. A, 3, 6954, 10.1039/C4TA06360K Yabuuchi, 2014, A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity, J. Mater. Chem. A, 2, 16851, 10.1039/C4TA04351K Chen, 2016, Advanced high energy density secondary batteries with multi-electron reaction materials, Adv. Sci., 3, 39, 10.1002/advs.201600051 Kraytsberg, 2017, A critical review-promises and barriers of conversion electrodes for Li-ion batteries, J. Solid State Electrochem., 21, 1907, 10.1007/s10008-017-3580-9 Klein, 2013, Conversion reactions for sodium-ion batteries, Phys. Chem. Chem. Phys., 15, 15876, 10.1039/c3cp52125g Hu, 2017, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries, Adv. Mater., 29, 24, 10.1002/adma.201700606 Ali, 2015, An open-framework iron fluoride and reduced graphene oxide nanocomposite as a high-capacity cathode material for Na-ion batteries, J. Mater. Chem., 3, 10258, 10.1039/C5TA00643K Ma, 2014, In situ generated FeF3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries, Nano Energy, 10, 295, 10.1016/j.nanoen.2014.10.004 Zhou, 2015, FeO0.7F1.3/C nanocomposite as a high-capacity cathode material for sodium-ion batteries, Adv. Funct. Mater., 25, 696, 10.1002/adfm.201403241 Amatucci, 2007, Fluoride based electrode materials for advanced energy storage devices, J. Fluorine Chem., 128, 243, 10.1016/j.jfluchem.2006.11.016 Wang, 2012, Conversion electrodes for lithium batteries: evolution of nanostructure during lithiation, Abstr. Pap. Am. Chem. Soc., 243, 1 Badway, 2003, Carbon-metal fluoride nanocomposites - structure and electrochemistry of FeF3 : C, J. Electrochem. Soc., 150, A1209, 10.1149/1.1596162 Goni, 1999, Intercalation of Cu2+ in the HNiPO4 center dot H2O layered phosphate: study of the structure, spectroscopic, and magnetic properties of the intercalated derivative and the related CuNi2(PO4)2 compound, Chem. Mater., 11, 1752, 10.1021/cm980785w Dean, 1979 Kim, 2018, Conversion-based cathode materials for rechargeable sodium batteries, Ad. Energy Mater., 8 Almodovar, 1965, Magnetic structure of CuSO4, Phys. Rev., 138, 10.1103/PhysRev.138.A153 Wang, 2008, The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method, Angew. Chem. Int. Ed., 47, 7461, 10.1002/anie.200802539 Liu, 2016, Synthesis of the carbon-coated nanoparticle Co9S8 and its electrochemical performance as an anode material for sodium-ion batteries, Langmuir, 32, 12593, 10.1021/acs.langmuir.6b02870 Lyu, 2017, Ball-milled carbon nanomaterials for energy and environmental applications, Acs Sustain. Chem. Eng., 5, 9568, 10.1021/acssuschemeng.7b02170 Wu, 2017, Conversion cathodes for rechargeable lithium and lithium-ion batteries, Energy Environ. Sci., 10, 435, 10.1039/C6EE02326F Yoshida, 2014, New P2-Na0.70Mn0.60Ni0.30Co0.10O2 layered oxide as electrode material for Na-ion batteries, J. Electrochem. Soc., 161, A1987, 10.1149/2.0121414jes Wang, 2014, All organic sodium-ion batteries with Na4C8H2O6, Angew. Chem. Int. Ed., 53, 5892, 10.1002/anie.201400032 Su, 2013, Hydrothermal synthesis of alpha-MnO2 and beta-MnO2 nanorods as high capacity cathode materials for sodium ion batteries, J. Mater. Chem. A, 1, 4845, 10.1039/c3ta00031a de Boisse, 2014, P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in Na batteries: structural changes induced by the electrochemical (De)intercalation process, Inorg. Chem., 53, 11197, 10.1021/ic5017802 Kumakura, 2016, Sodium and manganese stoichiometry of P2-type Na2/3MnO2, Angew. Chem. Int. Ed., 55, 12760, 10.1002/anie.201606415 Yuan, 2014, P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery, Electrochim. Acta, 116, 300, 10.1016/j.electacta.2013.10.211 Mahadi, 2016, Vanadium dioxide - reduced graphene oxide composite as cathode materials for rechargeable Li and Na batteries, J. Power Sources, 326, 522, 10.1016/j.jpowsour.2016.07.026 Chihara, 2013, Cathode properties of Na2C6O6 for sodium-ion batteries, Electrochim. Acta, 110, 240, 10.1016/j.electacta.2013.04.100 Zhao, 2012, An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries, Electrochem. Commun., 21, 36, 10.1016/j.elecom.2012.05.015 Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Blochl, 1994, Projector augmented-wave method, Phys. Rev. B., 50, 17953, 10.1103/PhysRevB.50.17953 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Anisimov, 1997, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method, J. Phys. Condens. Matter, 9, 767, 10.1088/0953-8984/9/4/002 Jain, 2013, Commentary: the Materials Project: a materials genome approach to accelerating materials innovation, Apl. Mater., 1, 11, 10.1063/1.4812323