New complete embedded minimal surfaces in $${{\mathbb {H} ^2\times \mathbb {R}}}$$
Tóm tắt
Từ khóa
Tài liệu tham khảo
Collin P., Rosenberg H.: Construction of harmonic diffeomorphisms and minimal graphs. Ann. Math. 172(3), 1879–1906 (2010)
Daniel B.: Isometric immersions into $${{\mathbb {S}} ^n\times \mathbb {R}}$$ and $${{\mathbb {H}} ^n\times \mathbb {R}}$$ and applications to minimal surfaces. Trans. Amer. Math. Soc. 361(12), 6255–6282 (2009)
Hauswirth L.: Minimal surfaces of Riemann type in three-dimensional product manifolds. Pacific J. Math 224, 91–117 (2006)
Hauswirth L., Rosenberg H.: Minimal surfaces of finite total curvature in $${\mathbb {H} \times\mathbb {R}}$$ . Mat. Contemp. 31, 65–80 (2006)
Hauswirth L., Sa Earp R., Toubiana E.: Associate and conjugate minimal immersions in M × R. Tohoku Math. J. 60(2), 267–286 (2008)
Huber A.: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32, 13–72 (1957)
Jorge L.P.M., Meeks W.H. III: The topology of complete minimal surfaces of finite total Gaussian curvature. Topology 22, 203–221 (1983)
Karcher H.: The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions. Manuscripta Math. 64, 291–357 (1989)
Karcher H., Pinkall U., Sterling I.: New minimal surfaces in S 3. J. Differential Geom. 28, 169–185 (1988)
Nelli B., Rosenberg H.: Minimal surfaces in $${{\mathbb {H}}^ 2\times\mathbb {R}}$$ . Bull. Braz. Math. Soc. (N.S.) 33, 263–292 (2002)
Rosenberg H.: Minimal surfaces in $${{\mathbb {M}}^ 2\times\mathbb {R}}$$ . Illinois J. Math. 46, 1177–1195 (2002)
Sa Earp R.: Parabolic and hyperbolic screw motion surfaces in $${\mathbb {H} ^2\times\mathbb {R}}$$ . J. Aust. Math. Soc. 85, 113–143 (2008)
Sa Earp R., Toubiana E.: Screw motion surfaces in $${\mathbb {H} ^ 2\times\mathbb {R}}$$ and $${\mathbb {S}^ 2\times\mathbb {R}}$$ . Illinois J. Math. 49, 1323–1362 (2005)
Sa Earp R., Toubiana E.: An asymptotic theorem for minimal surfaces and existence results for minimal graphs in $${\mathbb {H} ^2\times\mathbb {R}}$$ . Math. Ann. 342, 309–331 (2008)
Schoen R.: Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Diff. Geom. 18, 791–809 (1983)