New branched benign compounds including double antibiotic scaffolds: synthesis, simulation and adsorption for anticorrosion effect on mild steel

Springer Science and Business Media LLC - Tập 17 Số 2 - Trang 167-182 - 2023
Yueting Shi1, Lingli Chen2, Shengtao Zhang2, Hongru Li2, Fang Gao2
1Chongqing University
2College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ibrahimi B E, Bazzi L, Issami S E. The role of pH in corrosion inhibition of tin using the proline amino acid: theoretical and experimental investigations. RSC Advances, 2020, 10(50): 29696–29704

Kioka A, Nakagawa B. Theoretical and experimental perspectives in utilizing nanobubbles as inhibitors of corrosion and scale in geothermal power plant. Renewable & Sustainable Energy Reviews, 2021, 149: 111373

Murmua M, Saha S K, Murmu N C, Banerjee P. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol·L−1 HCl medium: an experimental, density functional theory and molecular dynamics simulation study. Corrosion Science, 2019, 146: 134–151

Mobin M, Noori S. Adsorption and corrosion inhibition behaviour of zwitterionic gemini surfactant for mild steel in 0.5 M HCl. Tenside, Surfactants, Detergents, 2016, 53(4): 357–367

Behpour M, Ghoreishi S M, Mohammadi N, Soltani N, Salavati-Niasari M. Investigation some Schiff base compounds containing disulfide bonds as HCl corrosion inhibitors for mild steel. Corrosion Science, 2010, 52(12): 4046–4057

Satpati S, Saha S K, Suhasaria A, Banerjee P, Sukul D. Adsorption and anti-corrosion characteristics of vanillin Schiff bases on mild steel in 1 M HCl: experimental and theoretical study. RSC Advances, 2020, 10(16): 9258–9273

Aslam J. Cationic gemini surfactant as corrosion inhibitor for mild steel in 1 M HCl and synergistic effect of organic salt (sodium tosylate). Journal of Adhesion Science and Technology, 2019, 33(18): 1–21

Ibrahimi B E, Jmiai A, Somoue A, Oukhrib R. Cysteine duality effect on the corrosion inhibition and acceleration of 3003 aluminium alloy in a 2% NaCl solution. Portugaliae Electrochimica Acta, 2018, 36(6): 403–422

Eddy N O, Stoyanov S R, Ebenso E E. Fluoroquinolones as corrosion inhibitors for mild steel in acidic medium: experimental and theoretical studies. International Journal of Electrochemical Science, 2010, 5(8): 1127–1150

Pang X, Ran X, Kuang F, Xie J, Hou B. Inhibiting effect of ciprofloxacin, norfloxacin and ofloxacin on corrosion of mild steel in hydrochloric acid. Chinese Journal of Chemical Engineering, 2010, 18(2): 337–345

Thanapackiam P, Rameshkumar S, Subramanian S S, Mallaiya K. Electrochemical evaluation of inhibition efficiency of ciprofloxacin on the corrosion of copper in acid media. Materials Chemistry and Physics, 2016, 174: 129–137

Zhang S, Tao Z, Li W, Hou B. The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 1 M hydrochloric acid. Applied Surface Science, 2009, 255(15): 6757–6763

Huang H, Fu Y, Li F, Wang Z, Zhang S, Wang X, Wang Z, Li H, Gao F. Orderly self-assembly of new ionic copolymers for efficiently protecting copper in aggressive sulfuric acid solution. Chemical Engineering Journal, 2020, 384: 123293

Vassallo E, Cremona A, Ghezzi F, Dellera F, Laguardia L, Ambrosone G, Coscia U. Structural and optical properties of amorphous hydrogenated silicon carbonitride films produced by PECVD. Applied Surface Science, 2006, 252(22): 7993–8000

Aljourani J, Raeissi K, Golozar M A. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution. Corrosion Science, 2009, 51(8): 1836–1843

Khaled K F. The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions. Electrochimica Acta, 2003, 48(17): 2493–2503

Tan B, Zhang S, Liu H, Guo Y, Qiang Y, Li W, Guo L, Xu C, Chen S. Corrosion inhibition of X65 steel in sulfuric acid by two food flavorants 2-isobutylthiazole and 1-(1,3-thiazol-2-yl) ethanone as the green environmental corrosion inhibitors: combination of experimental and theoretical researches. Journal of Colloid and Interface Science, 2019, 538: 519–529

Huang H, Fu Y, Mu X, Luo Z, Zhang S, Wang Z, Li H, Gao F. Molecular self-assembly of novel amphiphilic topological hyperbranched polymers for super protection of copper in extremely aggressive acid solution. Applied Surface Science, 2020, 529: 147076

Shi Y, Fu Y, Xu S, Huang H, Zhang S, Wang Z, Li W, Li H, Gao F. Strengthened adsorption and corrosion inhibition of new single imidazole-type ionic liquid molecules to copper surface in sulfuric acid solution by molecular aggregation. Journal of Molecular Liquids, 2021, 338: 116675

Li L, Zhang X, Gong S, Zhao H, Bai Y, Li Q, Ji L. The discussion of descriptors for the QSAR model and molecular dynamics simulation of benzimidazole derivatives as corrosion inhibitors. Corrosion Science, 2015, 99: 76–88

Obot I B, Obi-Egbedi N O, Ebenso E E, Afolabi A S, Oguzie E E. Experimental, quantum chemical calculations, and molecular dynamic simulations insight into the corrosion inhibition properties of 2-(6-methylpyridin-2-yl)oxazolo[5,4-f][1,10] phenanthroline on mild steel. Research on Chemical Intermediates, 2013, 39(5): 1927–1948

Boumhara K, Tabyaoui M, Jama C, Bentiss F. Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: electrochemical and XPS investigations. Journal of Industrial and Engineering Chemistry, 2015, 29: 146–155

Tourabi M, Nohair K, Traisnel M, Jama C, Bentiss F. Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3,5-bis(2-thienylmethyl)-4-amino-1,2,4-triazole. Corrosion Science, 2013, 75: 123–133

Cánneva A, Giordana I S, Erra G, Calvo A. Organic matter characterization of shale rock by X-ray photoelectron spectroscopy (XPS): adventitious carbon contamination and radiation damage. Energy & Fuels, 2017, 31(10): 10414–10419

Huang H, Fu Y, Wang X, Gao Y, Wang Z, Zhang S, Li H, Gao F, Chen L. Nano- to micro-self-aggregates of new bisimidazole-based copoly(ionic liquid)s for protecting copper in aqueous sulfuric acid solution. ACS Applied Materials & Interfaces, 2019, 11(10): 10135–10145

El-Katori E E, Nessim M I, Deyab M A, Shalabi K. Electrochemical, XPS and theoretical examination on the corrosion inhibition efficacy of stainless steel via novel imidazolium ionic liquids in acidic solution. Journal of Molecular Liquids, 2021, 337(11): 16467

Hashim N Z N, Anouar E H, Kassim K, Zaki H M, Alharthi A I, Embong Z. XPS and DFT investigations of corrosion inhibition of substituted benzylidene Schiff bases on mild steel in hydrochloric acid. Applied Surface Science, 2019, 476: 861–877

Qiang Y, Zhang S, Zhao H, Tan B, Wang L. Enhanced anticorrosion performance of copper by novel N-doped carbon dots. Corrosion Science, 2019, 161: 108193

Rodrigues L S. Biomass of microalgae spirulina maxima as a corrosion inhibitor for 1020 carbon steel in acidic solution. International Journal of Electrochemical Science, 2018, 13(7):6169–6189

Solmaz R. Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Corrosion Science, 2010, 52(10): 3321–3330

Lima K C S, Paiva V M, Perrone D, Ripper B, Simões G, Rocco M L M, Veiga A G, D’Elia E. Glycine max meal extracts as corrosion inhibitor for mild steel in sulphuric acid solution. Journal of Materials Research and Technology, 2020, 9(6): 12756–12772

Mobin M, Rizvi M. Adsorption and corrosion inhibition behavior of hydroxyethyl cellulose and synergistic surfactants additives for carbon steel in 1 M HCl. Carbohydrate Polymers, 2017, 156: 202–214

Shi Y, Fu Y, Huang H, Li H, Zhang S, Li W, Gao F. New small gemini ionic liquids for intensifying adsorption and corrosion resistance of copper surface in sulfuric acid solution. Journal of Environmental Chemical Engineering, 2021, 9(6): 106679

Nadi I, Belattmania Z, Sabour B, Reani A, Sahibed-dine A, Jama C, Bentiss F. Sargassum muticum extract based on alginate biopolymer as a new efficient biological corrosion inhibitor for carbon steel in hydrochloric acid pickling environment: gravimetric, electrochemical and surface studies. International Journal of Biological Macromolecules, 2019, 141: 137–149

Mert B D, Yüce A O, Kardas G, Yazici B. Inhibition effect of 2-amino-4-methylpyridine on mild steel corrosion: experimental and theoretical investigation. Corrosion Science, 2014, 85: 287–295

Zhang W, Wang Y, Li H J, Liu Y, Tao R, Guan S, Li Y, Wu Y C. Synergistic inhibition effect of 9-(4-chlorophenyl)-1,2,3,4-tetrahydro-acridines and tween-80 for mild steel corrosion in acid medium. Journal of Physical Chemistry C, 2019, 123(23): 14480–14489

Zheng X, Zhang S, Li W, Lin L, He J, Wu J. Investigation of 1-butyl-3-methyl-1H-benzimidazolium iodide as inhibitor for mild steel in sulfuric acid solution. Corrosion Science, 2014, 80: 383–392

Zheng X, Zhang S, Li W, Gong M, Yin L. Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution. Corrosion Science, 2015, 95: 168–179

Pareek S, Jain D, Hussain B, Biswas A, Shrivastava R, Parida S K, Kisan H K, Lgaz H, Chung I, Behera D. A new insight into corrosion inhibition mechanism of copper in aerated 3.5 wt. % NaCl solution by eco-friendly imidazopyrimidine dye: experimental and theoretical approach. Chemical Engineering Journal, 2019, 358: 725–742

Jafari H, Danaee I, Eskandari H, RashvandAvei M. Combined computational and experimental study on the adsorption and inhibition effects of N2O2 Schiff base on the corrosion of API 5L grade B steel in 1 mol/L HCl. Journal of Materials Science and Technology, 2014: 884–892

Mobin M, Zehra S, Aslam R. L-Phenylalanine methyl ester hydrochloride as a green corrosion inhibitor for mild steel in hydrochloric acid solution and the effect of surfactant additive. RSC Advances, 2016, 6(7): 5890–5902

Jevremović I, Singer M, Nešić S, Mišković-Stanković V. Inhibition properties of self-assembled corrosion inhibitor talloil diethylenetriamine imidazoline for mild steel corrosion in chloride solution saturated with carbon dioxide. Corrosion Science, 2013, 77: 265–272

Bashir S, Singh G, Kumar A. Shatavari (asparagus racemosus) as green corrosion inhibitor of aluminium in acidic medium. Journal of Materials and Environmental Science, 2017, 8(12): 4284–4291

Popoola L T. Organic green corrosion inhibitors (OGCIs): a critical review. Corrosion Reviews, 2019, 37(2): 71–102

Singh A, Ansari K R, Kumar A, Liu W, Chen S, Lin Y. Electrochemical, surface and quantum chemical studies of novel imidazole derivatives as corrosion inhibitors for J55 steel in sweet corrosive environment. Journal of Alloys and Compounds, 2017, 712: 121–133

Kannan P, Rao T S, Rajendran N. Improvement in the corrosion resistance of carbon steel in acidic condition using naphthalen-2-ylnaphthalene-2-carboxammide inhibitor. Journal of Colloid and Interface Science, 2017, 512: 618–628

Yu C, Guan J, Chen K, Bae S C, Granick S. Single-molecule observation of long jumps in polymer adsorption. ACS Nano, 2013, 7(11): 9735–9742

Niu Q, Wang D. Probing the polymer anomalous dynamics at solid/liquid interfaces at the single-molecule level. Current Opinion in Colloid & Interface Science, 2019, 39: 162–172

Wang D, Wu H, Schwartz D K. Three-dimensional tracking of interfacial hopping diffusion. Physical Review Letters, 2017, 119(26): 268001

Zhang W, Ma R, Liu H, Liu Y, Li S, Niu L. Electrochemical and surface analysis studies of 2-(quinolin-2-yl)quinazolin-4(3H)-one as corrosion inhibitor for Q235 steel in hydrochloric acid. Journal of Molecular Liquids, 2016, 222: 671–679