New bounds for q-midpoint-type inequalities via twice q-differentiable functions on quantum calculus
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agarwal R (1953) A propos d’une note de m. pierre humbert. Comptes rendus de l’Academie des Sciences 236(21):2031–2032
Alp N, Sarikaya MZ, Kunt M, Iscan I (2018) \(q\)-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J King Saud Univ Sci 30:193–203
Al-Salam W (1966) Some fractional \(q\)-integrals and q-derivatives, Proceedings of the Edinburgh Mathematical Society, vol. 15, no. 2, pp. 135–140.
Ernst T A comprehensive treatment of \(q\)-calculus, Springer, Basel Heidelberg New York Dordrecht London
Ernst T (2003) A method for \(q\)-calculus. J Nonlinear Math Phys 10(4):487–525
Ernst T (2000) The history of \(q\)-calculus and new method. Department of Mathematics, Uppsala University, Sweden
Gauchman H (2004) Integral inequalities in \(q\)-calculus. Comput Math Appl 47:281–300
Jackson FH (1910) On a \(q\)-definite integrals, Quart. J Pure Appl Math 41:193–203
Jackson FH (1910) \(q\)-Difference equations. Amer J Math 32(4):305–314
Kac V, Cheung P (2002) Quantum Calculus. Universitext, Springer, New York
Noor MA, Noor KI, Awan MU (2015) Some quantum estimates for Hermite-Hadamard inequalities. Appl Math Comput 251:675–679
Noor MA, Noor KI, Awan MU (2015) Some quantum integral inequalities via preinvex functions. Appl Math Comput 269:242–251
Noor MA, Noor KI, Awan MU (2016) Quantum Ostrowski inequalities for \(q\)-differentiable convex functions. J Math Inequal 10:1013–1018
Noor MA, Awan MU (2013) Some integral inequalities for two kinds of convexities via fractional integrals. TJMM 5(2):129–136
Rajkovic PM, Stankovic MS, Marinkovic SD (2004) The Zeros of Polynomials Orthogonal with Respect to \(q\)-Integral on Several Intervals in the Complex Plane, Proceedings of The Fifth International Conference on Geometry, Integrability and Quantization. Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences,
Sarikaya MZ, Saglam A, Yildirim H (2012) New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, International Journal of Open Problems in Computer Science and Mathematics(IJOPCM), 5(3)
Tariboon J, Ntouyas SK (2013) Quantum calculus on nite intervals and applications to impulsive difference equations. Adv Difference Equ 282:1–19