New bounding techniques for goal‐oriented error estimation applied to linear problems

International Journal for Numerical Methods in Engineering - Tập 93 Số 13 - Trang 1345-1380 - 2013
Pierre Ladevèze1, Florent Pled1, Ludovic Chamoin1
1Laboratoire de Mécanique et Technologie

Tóm tắt

SUMMARYThe paper deals with the accuracy of guaranteed error bounds on outputs of interest computed from approximate methods such as the finite element method. A considerable improvement is introduced for linear problems, thanks to new bounding techniques based on Saint‐Venant's principle. The main breakthrough of these optimized bounding techniques is the use of properties of homothetic domains that enables to cleverly derive guaranteed and accurate bounding of contributions to the global error estimate over a local region of the domain. Performances of these techniques are illustrated through several numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1002/nme.1620200611

10.1016/S0045-7825(97)00086-8

10.1007/s004660050191

10.1016/S0045-7825(97)00220-X

10.1016/S0045-7825(98)00343-0

10.1016/S0045-7825(98)00339-9

10.1016/S0045-7825(99)00077-8

10.1017/S0962492901000010

10.1016/j.cma.2004.10.013

10.1002/nme.1705

10.1002/nme.1978

10.1016/j.cma.2007.09.021

10.1007/s00466-007-0201-y

10.1016/j.cma.2008.12.020

10.1002/nme.2705

10.1002/nme.2957

10.1016/j.finel.2008.10.003

Ladevèze P, 2004, Mastering Calculations in Linear and Nonlinear Mechanics

10.1016/j.cma.2004.06.047

10.1002/nme.2623

10.1007/s00466-009-0388-1

10.1002/nme.2496

10.1016/j.cma.2009.11.007

10.1002/nme.3180

10.1007/s00466-011-0645-y

10.1016/S0045-7825(99)00072-9

10.1002/nme.228

10.1016/0045-7825(92)90057-Q

10.1090/qam/25902

Steklov MW, 1902, Sur les problèmes fondamentaux de la physique mathématique, Annales Scientifiques de l'Ecole Normale Supérieure, 19, 455, 10.24033/asens.516

Ladevèze J, 1978, Upper bounds of the Poincaré constant in elasticity (in French), Rendiconti della Accademia Nazionale dei Lincei, Serie VIII, 64, 548

Hochard C, 1993, A simplified analysis of elastic structures, European Journal of Mechanics Solids, 12, 509

10.1002/nme.1620340111

10.1063/1.1745385

10.1063/1.1699785

Courant R, 1953, Methods of Mathematical Physics

Graff KF, 1975, Wave Motion in Elastic Solids

10.1137/0147065

Stern M, 1976, A contour integral computation of mixed‐mode stress intensity factors, International Journal of Fracture, 12, 359, 10.1007/BF00032831

10.1016/j.compstruc.2008.11.014

TrefftzE.Ein Gegenstück zum ritzschen verfahren.Proceedings of the 2nd International Congress of Applied Mechanics Zurich 1926;131–137.

10.1016/0965-9978(95)00067-4

10.1016/0965-9978(95)00066-6

10.1016/j.compstruc.2004.04.006

10.1016/j.enganabound.2004.06.007

10.1002/nme.1620210310

Sladek J, 2000, Application of multi‐region Trefftz method in elasticity, CMES–Computer Modeling in Engineering & Sciences, 1, 1

10.1007/s00466-001-0282-y