New application of open source data and Rock Engineering System for debris flow susceptibility analysis
Tóm tắt
This research describes a quantitative, rapid, and low-cost methodology for debris flow susceptibility evaluation at the basin scale using open-access data and geodatabases. The proposed approach can aid decision makers in land management and territorial planning, by first screening for areas with a higher debris flow susceptibility. Five environmental predisposing factors, namely, bedrock lithology, fracture network, quaternary deposits, slope inclination, and hydrographic network, were selected as independent parameters and their mutual interactions were described and quantified using the Rock Engineering System (RES) methodology. For each parameter, specific indexes were proposed, aiming to provide a final synthetic and representative index of debris flow susceptibility at the basin scale. The methodology was tested in four basins located in the Upper Susa Valley (NW Italian Alps) where debris flow events are the predominant natural hazard. The proposed matrix can represent a useful standardized tool, universally applicable, since it is independent of type and characteristic of the basin.
Tài liệu tham khảo
ARPA PIEMONTE (2011) Sistema informativo dei fenomeni franosi in Piemonte (SIFRAP). http://www.arpa.piemonte.it/approfondimenti/temi-ambientali/geologia-e-dissesto/bancadatiged/sifrap (Accessed on 26 March 2021), (in Italian language)
Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng Geol 81:432–445. https://doi.org/10.1016/j.enggeo.2005.08.004
Bonetto S, Facello A, Umili G (2017) A new application of curvatool semi-automatic approach to qualitatively detect geological lineaments. Environ Eng Geosci 23:179–190. https://doi.org/10.2113/gseegeosci.23.3.179
Bovis MJ, Jakob M (1999) The role of debris supply conditions in predicting debris flow activity. Earth Surf Process Landf 24:1039–1054. https://doi.org/10.1002/(SICI)1096-9837(199910)24:11<1039::AID-ESP29>3.0.CO;2-U
Brabb EE (1987) Innovative approaches to landslide hazard and risk mapping. Int J Rock Mech Min Sci Geomech Abstr 24:A16. https://doi.org/10.1016/0148-9062(87)91363-5
Calligaris C, Zini L (2012) Debris Flow Phenomena: A Short Overview? In: Earth Sciences Imran Ahmad Dar, IntechOpen, https://doi.org/10.5772/29786
Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazard 20:117–135
Cascini L, Bonnard C, Corominas J, et al. (2005) Landslide hazard and risk zoning for urban planning and developmentstate of the art report. In: Hungr, Fell, Couture, and Eberhardt (eds.), Landslide Risk Management, Proceeding of the International Conference on Landslide Risk Management, Vancouver, Canada. A.A. Balkema Publishers, Taylor & Francis Group, London. pp 199–235.
Caselle C, Bonetto S, Vagnon F, Costanzo D (2019) Dependence of macro mechanical behaviour of gypsum on micro-scale grain-size distribution. Geotech Lett 9:1–9. https://doi.org/10.1680/jgele.18.00206
Caselle C, Bonetto S, Costanzo D (2020) Crack coalescence and strain accommodation in gypsum rock. Frat ed Integrita Strutt 14:247–255. https://doi.org/10.3221/IGF-ESIS.52.19
Corominas J, van Westen C, Frattini P, et al. (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263. https://doi.org/10.1007/s10064-013-0538-8
Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth-Science Rev 40:209–227. https://doi.org/10.1016/0012-8252(95)00065-8
Cruden DM, Varnes DJ (1996) Landslide types and processes. Spec Rep — Natl Res Counc Transp Res Board 247:36–75
Dal Piaz GV, Gianotti F, Monopoli B, et al. (2010) Note illustrative della Carta Geologica d’Italia alla scala 1: 50.000. (In Italian)
Dal Piaz GV (2010) The Italian Alps: A journey across two centuries of Alpine geology. J. Virtual Explor. 36
D’Agostino V, Cerato M, Coali R (1996) Il trasporto solido di eventi estremi nei torrenti del Trentino Orientale. In International Symposium Interpraevent. Publication No. 1. Garmisch-Partenkirchen, Germany. pp 377–386. (In Italian)
Dine V (1996) Debris Flow Control Structures for Forest Engineering Debris Flow Control Structures. Br Columbia
Ferrero AM, Umili G, Vagnon F (2016) Analysis of discontinuity data obtained with remote sensing tools to generate input for EC7 design. In: Rock Mechanics and Rock Engineering: From the Past to the Future. pp 1115–1120
Glade T, Elverfeldt K (2005) MultiRISK: an innovative concept to model natural risks. In: Hungr, Fell, Couture, and Eberhardt (eds.), Landslide Risk Management, Proceeding of the International Conference on Landslide Risk Management, Vancouver, Canada. A.A. Balkema Publishers, Taylor & Francis Group, London. pp 551–555.
Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorph 31(1–4):181–216
Harrison JP, Hudson JA (2006) Comprehensive hazard identification in rock engineering using interaction matrix mechanism pathways. In: Proceedings of the 41st U.S. Rock Mechanics Symposium (USRMS), Golden, Colorado pp 1144–1152.
Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436-y
Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. Landslides Proc 5th Symp Lausanne 1: 3–35. https://doi.org/10.1016/0148-9062(89)90310-0
Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. https://doi.org/10.1029/97RG00426
Jakob M, Hungr O (2005) Debris-flow Hazards and Related Phenomena
Jordan G, Meijninger BML, Hinsbergen DJJ, et al. (2005) Extraction of morphotectonic features from DEMs: Development and applications for study areas in Hungary and NW Greece. Int J Appl Earth Obs Geoinf 7:163–182. https://doi.org/10.1016/j.jag.2005.03.003
Kavoura K, Sabatakakis N (2020) Investigating landslide susceptibility procedures in Greece. Landslides 17:127–145. https://doi.org/10.1007/s10346-019-01271-y
Kim MK, Yoo Y Il, Song JJ (2008) Methodology to quantify rock behavior around shallow tunnels by rock engineering systems. Geosystem Eng 11:37–42. https://doi.org/10.1080/12269328.2008.10541283
Kouli M, Loupasakis C, Soupios P, Vallianatos F (2010) Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece. Nat Hazards 52:599–621. https://doi.org/10.1007/s11069-009-9403-2
Liu BY, Nearing MA, Risse LM (1994) Slope gradient effects on soil loss for steep slopes. Trans Am Soc Agric Eng 37:1835–1840. https://doi.org/10.13031/2013.28273
Malusà M, Mosca P (2002) Assetto strutturale duttile dei livelli superiori del Massicio d’Ambin (Alpi Occidentali). In: Guida all’escursione pre-Riunione: Il sistema Alpino-Appenninico nel Cenozoico (6–9 settembre 2002). Riunione della 81° Riunione della Societa Geologica Italiana, Torino, Italia (10–12 settembre). pp 83–86. (in Italian language)
Malusà M, Mosca P, Borghi A, et al. (2002) Approccio multidisciplinare per la ricostruzione dell’assetto tettono-stratigrafico e dell’evoluzione metamorfico-strutturale di un settore di catena orogenica; l’esempio dell’Alta Valle di Susa (Alpi occidentali). In: Tra Alpi, Dinaridi e Adriatico; Atti dell’80 (super a) riunione estiva della Societa Geologica Italiana. (in Italian language)
Malusà M (2004) Post-metamorphic evolution of the Western Alps: kinematic constraints from a multidisciplinary approach (geological mapping, mesostructural analysis, fission-track dating, fluid inclusion analysis). PhD thesis, CNR-IGG — University of Torino, Torino, Italy.
Mazzoccola DF, Hudson JA (1996) A comprehensive method of rock mass characterization for indicating natural slope instabiblity. Q J Eng Geol 29:37–56. https://doi.org/10.1144/GSL.QJEGH.1996.029.P1.03
Mosca P, Borghi A, Gattiglio M (2008) Storia pre-alpina ed alpina nel Massiccio di Ambin (Alpi Occidentali). In: Rendiconti Online Societa Geologica Italiana. pp 129–131. (in Italian language)
Oulx Municipality (2012) Variante di revisione generale al P.R.G.C. Verifiche di compatibilità idraulica ed idrogeologica. Progetto definitivo. (in Italian language)
Piana F, Fioraso G, Iracea A et al. (2017) Geology of Piemonte region (NW Italy, Alps-Apennines interference zone). J Maps 13(2): 395–405.
Polino R, Dela Pierre F, Borghi A, et al. (2002) Note illustrative della Carta Geologica d’Italia alla scala 1:50.000, Foglio 132-152-153 Bardonecchia della Carta Geologica d’Italia — Regione Piemonte, Direzione Regionale dei servizi Tecnici di Prevenzione. Litografia Geda, Nichelino (TO) -Italia. (in Italian language)
Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8:175–189. https://doi.org/10.1016/0169-555X(93)90036-2
Rozos D, Pyrgiotis L, Skias S, Tsagaratos P (2008) An implementation of rock engineering system for ranking the instability potential of natural slopes in Greek territory. An application in Karditsa County. Landslides 5:261–270. https://doi.org/10.1007/s10346-008-0117-4
Servizio Geologico D’Italia, 2002. Carta geologica d’Italia alla scala 1:50.0000, Foglio 132-152-153 Bardonecchia. Regione Piemonte, Direzione Regionale dei servizi Tecnici di Prevenzione. Litografia Geda, Nichelino. Torino. (In Italian)
Skempton AW, Hutchinson J (1969) Stability of natural slopes and embankment foundations. In: State of the art report, Seventh International Conference on Soil Mechanics and Foundation Engineering. pp 291–340
Takahashi T (2007) Debris flow: mechanics, prediction and countermeasures. CRC Press. pp 1–572 https://doi.org/10.1007/BF02830184
Tavoularis N, Koumantakis I, Rozos D, Koukis G (2018) The Contribution of Landslide Susceptibility Factors Through the Use of Rock Engineering System (RES) to the Prognosis of Slope Failures: An Application in Panagopoula and Malakasa Landslide Areas in Greece. Geotech Geol Eng 36:1491–1508. https://doi.org/10.1007/s10706-017-0403-9
Tiranti D, Bonetto S, Mandrone G (2008) Quantitative basin characterisation to refine debris-flow triggering criteria and processes: An example from the Italian Western Alps. Landslides 5:45–57. https://doi.org/10.1007/s10346-007-0101-4
Tiranti D, Cremonini R, Asprea I, Marco F (2016) Driving factors for torrential mass-movements occurrence in the Western Alps. Front Earth Sci 4. https://doi.org/10.3389/feart.2016.00016
Tiranti D, Cremonini R, Marco F, et al. (2014) The DEFENSE (debris Flows triggEred by storms — nowcasting system): An early warning system for torrential processes by radar storm tracking using a Geographic Information System (GIS). Comput Geosci 70:96–109. https://doi.org/10.1016/j.xageo.2014.05.004
Tiranti D, Deangeli C (2015) Modeling of debris flow depositional patterns according to the catchment and sediment source area characteristics. Front Earth Sci 3. https://doi.org/10.3389/feart.2015.00008
Tripathi NK, Gokhale KVGK, Siddiqui MU (2000) Directional morphological image transforms for lineament extraction from remotely sensed images. Int J Remote Sens 21:3281–3292. https://doi.org/10.1080/014311600750019895
Tveite H (2015) The QGIS Line Direction Histogram Plugin. http://plugins.qgis.org/plugins/LineDirectionHistogram/
Umili G, Bonetto SMR, Mosca P, et al. (2020) In situ block size distribution aimed at the choice of the design block for rockfall barriers design: A case study along gardesana road. Geosci 10:1–21. https://doi.org/10.3390/geosciences10060223
Umili G, Bonetto S, Ferrero AM (2018) An integrated multiscale approach for characterization of rock masses subjected to tunnel excavation. J Rock Mech Geotech Eng 10:513–522. https://doi.org/10.1016/j.jrmge.2018.01.007
Vagnon F, Ferrero AM, Pirulli M, Segalini A (2015) Theoretical and experimental study for the optimization of flexible barriers to restrain Debris Flows. Geoingegneria Ambientale e Mineraria 145(2): 29–35.
Vagnon F, Ferrero AM, Umili G, Segalini A (2017) A Factor Strength Approach for the Design of Rock Fall and Debris Flow Barriers. Geotech Geol Eng 35:2663–2675. https://doi.org/10.1007/s10706-017-0269-x
Vagnon F (2020) Design of active debris flow mitigation measures: a comprehensive analysis of existing impact models. Landslides 17:313–333. https://doi.org/10.1007/s10346-019-01278-5
Vagnon F, Bonetto S, Ferrero AM, et al. (2020) Eurocode 7 and rock engineering design: The case of rockfall protection barriers. Geosci 10:1–16. https://doi.org/10.3390/geosciences10080305
Vagnon F, Ferrero AM, Alejano LR (2020) Reliability-based design for debris flow barriers. Landslides 17:49–59. https://doi.org/10.1007/s10346-019-01268-7
Vagnon F, Pirulli M, Yague A, Pastor M (2019) Comparison of two depth-averaged numerical models for debris flow runout estimation. Can Geotech J 56:89–101. https://doi.org/10.1139/cgj-2017-0455
van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation — Why is it still so difficult? Bull Eng Geol Environ 65:167–184. https://doi.org/10.1007/s10064-005-0023-0
VanDine DF (2009) Debris flow control structures for forest engineering: British Columbia Ministry of Forests Research Program, Victoria. Br Columbia 75 pp 8:1996
Vaz DA, Di Achille G, Barata MT, Alves EI (2012) Tectonic lineament mapping of the Thaumasia Plateau, Mars: Comparing results from photointerpretation and a semiautomatic approach. Comput Geosci 48:162–172. https://doi.org/10.1016/j.cageo.2012.05.008
Xu C, Xu X, Dai F, et al. (2013) Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Nat Hazards 68:883–900. https://doi.org/10.1007/s11069-013-0661-7