New and known species of the genus Desmodora De Man, 1889 (Nematoda: Desmodoridae) from the hydrothermal vent communities of the Piip volcano (south-west Bering Sea)

V.V. Mordukhovich1,2, N.P. Fadeeva1, A.A. Semenchenko1,3, S.I. Kiyashko2, E.R. Scripova1
1Far Eastern Federal University, Vladivostok, 690922, Russia
2A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
3Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690022, Russia

Tài liệu tham khảo

Armenteros, 2014, Systematics and DNA barcoding of free-living marine nematodes with emphasis on tropical desmodorids using nuclear SSU rDNA and mitochondrial COI sequences, Nematology, 16, 979, 10.1163/15685411-00002824 Armenteros, 2014, Revision of Desmodorinae and spiriniinae (Nematoda: Desmodoridae) with redescription of eight known species, Eur. J. Taxon., 1 Baranov, 1991, The Komandorsky Basin as a product of spreading behind a transform plate boundary, Tectonophysics, 199, 237, 10.1016/0040-1951(91)90174-Q Baranov, 2021, Morphology of the Piip submarine Volcano in the Komandorsky Basin based on multibeam echosounder data, Bull. KRAESC. Environ. Sci., 2, 6 Blaxter, 1998, A molecular evolutionary framework for the phylum Nematoda, Nature, 392, 71, 10.1038/32160 Bligh, 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911, 10.1139/y59-099 Boucher, 1975, Nématodes des sables fins infralittoraux de la Pierre Noire (Manche occidentale). I. Desmodoridae, Bulletin du Muséum national d'Histoire naturelle, 3e série Zoologie, 285, 101 Bütschli, 1874, vol. IX, 1 Carreau, 1978, Adaptation of macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts, J. Chromatogr. A, 151, 384, 10.1016/S0021-9673(00)88356-9 Copley, 2007, Diversity of meiofauna and free-living nematodes in hydrothermal vent mussel beds on the northern and southern East Pacific Rise, J. Mar. Biol. Assoc. U. K., 87, 1141, 10.1017/S0025315407055956 Danovaro, 2017, The deep-sea under global change, Curr. Biol., 27, R461, 10.1016/j.cub.2017.02.046 De Grisse, 1969, Redescription ou modifications de quelques techniques utilisées dans l' étude des nematodes phytoparasitaires, Mededelingen Rijksfakultiet Landbouwwetenschappen Gent, 34, 352 de Man, 1889, Espèces et genres nouveaux de Nématodes libres de la mer du Nord et de la Manche, Mem. Soc. Zool. Fr., 2, 1 De Oliveira, 2012, An integrative approach to characterize cryptic species in the Thoracostoma trachygaster Hope, 1967 complex (Nematoda: Leptosomatidae), Zool. J. Linn. Soc., 164, 18, 10.1111/j.1096-3642.2011.00758.x Decraemer, 1997, Deep-sea nematodes (Nemata, Prochaetosomatinae): new taxa from hydrothermal vents and polymetallic nodule formation of the pacific (east Rise, North Fiji and Lau Basins, Clarion Clipperton fracture zone), Zool. Scripta, 26, 1, 10.1111/j.1463-6409.1997.tb00405.x Derycke, 2010, Linking DNA sequences to morphology: cryptic diversity and population genetic structure in the marine nematode Thoracostoma trachygaster (Nematoda, Leptosomatidae), Zool. Scripta, 39, 276, 10.1111/j.1463-6409.2009.00420.x Derycke, 2005, Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina, Mar. Ecol. Prog. Ser., 300, 91, 10.3354/meps300091 Diaz-Recio Lorenzo, 2021, Copepod assemblages along a hydrothermal stress gradient at diffuse flow habitats within the ABE vent site (Eastern Lau Spreading Center, Southwest Pacific), Deep. Res. Part I Oceanogr. Res. Pap., 173 Dick, 2013, The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats, Front. Microbiol., 4, 124, 10.3389/fmicb.2013.00124 Dijkman, 2006, Photosynthetic characteristics of the phytoplankton in the Scheldt estuary: community and single- cell fluorescence measurements, Eur. J. Phycol., 41, 425, 10.1080/09670260600937791 Dinet, 1988, Premières observations sur la meiofaune des sites hydrothermaux de la dorsale Est-Pacifique (Guaymas, 21 N) et de l'Explorer Ridge. Proceedings of the hydrothermalism, biology and ecology symposium, Paris, 4–7 November 1985, Oceanol. Acta, 85, 7 Dodd, 2017, Evidence for early life in Earth's oldest hydrothermal vent precipitates, Nature, 543, 60, 10.1038/nature21377 Flint, 2006, Patterns of nematode diversity at hydrothermal vents on the East Pacific Rise, Cah. Biol. Mar., 47, 365 Floyd, 2005, Nematode-specific PCR primers for the 18S small subunit rRNA gene, Mol. Ecol. Notes, 5, 611, 10.1111/j.1471-8286.2005.01009.x Fry, 2006, 308 Galkin, 2019, Biological investigations research in Bering Sea using a remote operated vehicle Comanche, Oceanology, 59, 170, 10.1134/S000143701901003X Galkin, 2019, Comprehensive research of ecosystems of hydrothermal vents and cold seeps in the Bering Sea (cruise 82 of the R/V Akademik M.A. Lavrentyev), Oceanology, 59, 618, 10.1134/S0001437019040052 Gerlach, 1950, Über einige Nematoden aus der Familie der Desmodoriden, Zool. Anz., 145, 178 Gerlach, 1963, Freilebende Meeresnematoden von den Malediven II, Kiel. Meeresforsch., 19, 67 German, 2011, Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map, PLoS One, 6, 10.1371/journal.pone.0023259 Gollner, 2015, Differences in recovery between deep-sea hydrothermal vent and vent-proximate communities after a volcanic eruption, Deep-Sea Res. Part I, 106, 167, 10.1016/j.dsr.2015.10.008 Gollner, 2015, Size matters at deep-sea hydrothermal vents: different diversity and habitat fidelity patterns of meio- and macrofauna, Mar. Ecol. Prog. Ser., 520, 57, 10.3354/meps11078 Gollner, 2020, Animal community dynamics at senescent and active vents at the 9◦N East Pacific Rise after a volcanic eruption, Front. Mar. Sci., 6, 832, 10.3389/fmars.2019.00832 Gollner, 2013, Nematode succession at deep-sea hydrothermal vents after a recent volcanic eruption with the description of two dominant species, Org. Divers. Evol., 13, 349, 10.1007/s13127-012-0122-2 Hammer, 2001, PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 4, 9pp Inglis, 1968, vol. 2, 29 Jaschinski, 2008, Effects of acidification in multiple stable isotope analyses, Limnol Oceanogr. Methods, 6, 12, 10.4319/lom.2008.6.12 Kelly, 2012, Fatty acids as dietary tracers in benthic food webs, Mar. Ecol. Prog. Ser., 446, 1, 10.3354/meps09559 Kreis, 1963, Marine Nematoda, The Zoology of Iceland, 2, 1 Kumar, 2016, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054 Lanfear, 2012, Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses, Mol. Biol. Evol., 29, 1695, 10.1093/molbev/mss020 Leduc, 2021, New free-living nematode species and records (Chromadorea: Plectida and Desmodorida) from the edge and axis of kermadec trench, southwest Pacific ocean, PeerJ, 9, 10.7717/peerj.12037 Leduc, 2016, Morphological and molecular characterisation of new Acanthopharynx and Desmodora species (Nematoda: Desmodorinae) from intertidal sediments of New Zealand, Nematology, 18, 905, 10.1163/15685411-00003004 Leduc, 2016, Phylogenetic relationships within the superfamily Desmodoroidea (Nematoda: Desmodorida), with descriptions of two new and one known species, Zool. J. Linn. Soc., 176, 511, 10.1111/zoj.12324 Levin, 2005, Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes, Oceanogr. Mar. Biol. Annu. Rev., 43, 1 Levin, 2016, Hydrothermal vents and methane seeps: rethinking the sphere of influence, Front. Mar. Sci., 3, 10.3389/fmars.2016.00072 Levin, 2002, Isotopic evidence of chemosynthetic based nutrition of macrobenthos: the lightness of being at Pacific methane seeps, Limnol. Oceanogr., 47, 1336, 10.4319/lo.2002.47.5.1336 Magis, 2014, T-Coffee: tree-based consistency objective function for alignment evaluation, Methods Mol. Biol., 1079, 117, 10.1007/978-1-62703-646-7_7 Meldal, 2007, An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa, Mol. Phylogentic. Evol., 42, 622, 10.1016/j.ympev.2006.08.025 Mordukhovich, 2019, One new genus and two new free-living deep-sea nematode species with discussion of phylogeny of the family Leptosomatidae Filipjev, 1916, Prog. Oceanogr., 178, 10.1016/j.pocean.2019.102160 Moura, 2014, Four new species of Desmodora (Nematoda) from the deep south-east Atlantic, and a case of intersexuality in Desmodoridae, J. Mar. Biol. Assoc. U. K., 94, 85, 10.1017/S0025315413001458 Nakasugi, 2021, Simple harpacticoid composition observed at deep hydrothermal vent sites on sea knoll calderas in the North-west Pacific, J. Mar. Biol. Assoc. U. K., 101, 947, 10.1017/S0025315421000874 Nisbet, 2001, The habitat and nature of early life, Nature, 409, 1083, 10.1038/35059210 Nomaki, 2019, Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses, Mar. Ecol. Prog. Ser., 622, 49, 10.3354/meps13053 Nunn, 1992 Pereira, 2010, Diversity of free-living marine nematodes (Enoplida) from Baja California assessed by integrative taxonomy, Mar. Biol., 157, 1665, 10.1007/s00227-010-1439-z Polonik, 2018, Study of gas-saturated hydrothermal fluid of the Piip submarine volcano. Processing of XXI regional scientific conference «Volcanic activity and associated processes»/Chief Editor, academician of the RAS Gordeev E.I. Petropavlovsk-Kamchatsky: IVS FEB RAS, 197 Post, 2002, Using stable isotopes to estimate trophic position: models, methods, and assumptions, Ecology, 83, 703, 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 Rambaut, 2018, Posterior summarisation in Bayesian phylogenetics using Tracer 1, Syst. Biol., 7 Ronquist, 2012, Mrbayes 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space, Syst. Biol., 61, 539, 10.1093/sysbio/sys029 Rybakova, 2023, Hydrothermal vent communities of the submarine Piip Volcano (the southwestern Bering Sea), Deep Sea Res. 2 Top. Stud. Oceanogr., 10.1016/j.dsr2.2023.105268 Sapir, 2014, Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea, Front. Microbiol., 5, 1, 10.3389/fmicb.2014.00043 Seinhorst, 1959, A rapid method for the transfer of nematodes from fixative to anhydrous glycerin, Nematologica, 4, 10.1163/187529259X00381 Seliverstov, 2009, 191 Senokuchi, 2018, Chemoautotrophic food availability influences copepod assemblage composition at deep hydrothermal vent sites within sea knoll calderas in the northwestern Pacific, Mar. Ecol. Prog. Ser., 607, 37, 10.3354/meps12804 Setoguchi, 2014, Nematode community composition in hydrothermal vent and adjacent non-vent fields around Myojin Knoll, a seamount on the Izu-Ogasawara Arc in the western North Pacific Ocean, Mar. Biol., 161, 1775, 10.1007/s00227-014-2460-4 Shirayama, 1992, Studies of meiofauna collected from the Iheya Ridge during the dive 541 of the “SHINKAI 2000”, Proc. JAMSTEC symp. Deep. Sea. Res., 8, 287 Shirayama, 1990, Meiofauna in a cold-seep community off Hatsushima, central Japan, J. Oceanogr. Soc. Jpn., 46, 118, 10.1007/BF02123438 Speth, 2022, Microbial communities of Auka hydrothermal sediments shed light on vent biogeography and the evolutionary history of thermophily, ISME J., 16, 1750, 10.1038/s41396-022-01222-x Stamatakis, 2006, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, 22, 2688, 10.1093/bioinformatics/btl446 Svetashev, 2011, Mild method for preparation of 4,4- dimethyloxazoline derivatives of polyunsaturated fatty acids for GC-MS, Lipids, 46, 463, 10.1007/s11745-011-3550-4 Tchesunov, 2015, Free-living nematode species (Nematoda) dwelling in hydrothermal sites of the North Mid-Atlantic Ridge, Helgol. Mar. Res., 69, 343, 10.1007/s10152-015-0443-6 Teske, 2010, Sulfate-reducing and methanogenic hydrocarbon-oxidizing microbial communities in the marine environment, 2203 Uejima, 2017, Meiofaunal communities in hydrothermal vent and proximate non-vent habitats around neighboring seamounts on the Izu-Ogasawara Arc, western North Pacific Ocean, Mar. Biol., 164, 1, 10.1007/s00227-017-3218-6 Van Campenhout, 2016, Closely related intertidal and deep-sea Halomonhystera species have distinct fatty acid compositions, Helgol. Mar. Res., 70, 1 Van Gaever, 2009, Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence, Mar. Biol., 156, 1289, 10.1007/s00227-009-1170-9 Vanreusel, 2010, Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review, PLoS One, 5, 10.1371/journal.pone.0012449 Verschelde, 1998, Revision of Desmodora with descriptions of new desmodorids (Nematoda) from hydrothermal vents of the Pacific, J. Mar. Biol. Assoc. U. K., 78, 75, 10.1017/S0025315400039977 Vincx, 1989, Desmodoridae from the Bay of morlaix (Brittany) and the southern Bight of the North sea. Cahiers de Biologie marine, Station Biologique de Roscoff, 30, 103 Volkman, 2006, Lipid biomarkers for marine organic matter, vol. 2, 27 Wada, 1993, Stable isotopic structure of aquatic ecosystems, J. Biosci., 18, 483, 10.1007/BF02703081 Watanabe, 2021, Distribution and genetic divergence of deep-sea hydrothermal vent Copepods (dirivultidae: siphonostomatoida: Copepoda) in the northwestern pacific, Zool. Sci. (Tokyo), 38, 223 Wieser, 1954, Free-living marine nematodes II. Chromadoroidea, Acta Universitatis Lundensis (NF 2), 50, 1 Zekely, 2006, Nematode communities associated with tubeworm and mussel aggregations on the East Pacific Rise, Cah. Biol. Mar., 47, 477 Zekely, 2006, Three new nematode species (Monhysteridae) from deep-sea hydrothermal vents, Meiofauna Marina, 15, 25 Zekely, 2006, Hydrothermal vent meiobenthos associated with mytilid mussel aggregations from the Mid-Atlantic Ridge and East Pacific Rise, Deep Sea Res. I., 53, 1363, 10.1016/j.dsr.2006.05.010 Zeppilli, 2018, Biodiversity and ecology of meiofauna in extreme and changing environments, Mar. Biodivers., 48, 1, 10.1007/s12526-017-0840-y Zimmermann, 2018, A Completely reimplemented MPI Bioinformatics Toolkit with a new HHpred server at its Core, J. Mol. Biol., 430, 2237, 10.1016/j.jmb.2017.12.007 Zograf, 2021, A novel free-living marine nematode species Pseudochromadora thinaiica sp. n. (Nematoda: Desmodoridae) from the seagrass bed of Vietnam, Russ. J. Nematol., 29, 169