New analytical formulations for calculation of dispersion parameters of Gaussian model using parallel CFD

Morteza Ebrahimi1, A. Jahangirian1
1Department of Aerospace Engineering, Center of Excellence in Computational Aerospace, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Architectural Institute of Japan (1998) Working group for numerical predication of wind loading on buildings and structures. Subcommittee for wind engineering data unit for structural design. Numerical prediction of wind loading on buildings and structures

Barth TJ, Jespersen DC (1989) The design and application of upwind schemes on unstructured meshes. AIAA Paper No. 89–0366, 27th AIAA aerospace sciences meeting and exhibit, Reno, NV, USA.

Blocken B, Stathopoulos T, Carmeliet J (2007a) CFD simulation of the atmospheric boundary layer-wall function problems. Atmos Environ 41(2):238–252

Blocken B, Carmeliet J, Stathopoulos T (2007b) CFD evaluation of the wind speed conditions in passages between buildings—effect of wall-function roughness modifications on the atmospheric boundary layer flow. J Wind Eng Ind Aerodyn 95(9–11):941–962

Blocken B, Stathopoulos T, Saathoff P, Wang X (2008) Numerical evaluation of pollutant dispersion in the built environment: comparison between models and experiments. J Wind Eng Ind Aerodyn 96 (10–11):1817–1831

Bovard P, Caput, C, Doury A (1968) Etude expérimentale en vraie grandeur des transferts atmosphériques en terrain hétérogène accidenté. In: Congrès international sur la radioprotection du milieu devant le développement des utilisations pacifiques de l’énergie nucléaire, SFRP, Toulouse, Mai, pp 61–77

Briggs GA (1973) Diffusion estimation of small emissions. Contribution No. 79. Atmopsheric Turbulence and Diffusion Laboratory, Oak Ridge, TN

Briggs GA (1984) Plume rise and buoyancy effects. In: Anders R (ed) Atmospheric science and power production. U.S. Department of Energy D.O.E./TIC-27601 (DE 84005177), Washington, DC

Briggs GA (1985) Analytical parameterizations of diffusion—the convective boundary layer. J Clim Appl Met 14:1167–1186

Carpenter S, Montgomery TL, Leavitt JM, Colbaugh WC, Thomas FW (1971) Principal plume dispersion models: TVA power plants. J Air Pollut Control Assoc 21:491–495

Carruthers DJ (1994) UK-ADMS: a new approach to modeling dispersion in the Earth’s atmospheric boundary layer. J Wind Eng Ind Aerodyn 52:139–153

Carruthers DJ et al (1992) UK Atmospheric Dispersion Modelling System (UK-ADMS). In: van Dop H, Kallos G (eds) Air pollution modeling and its application IX. Appendix A: boundary layer structure. Plenum Press, New York, pp 15–28

Chang JC, Hanna SR (2004) Air quality model performance evaluation. Meteorol Atmos Phys 87:167–196

Coirier WJ (2005) Evaluation of CFD codes—US perspective. In: Schatzmann M, Britter R (eds) Quality assurance of microscale meteorological models. COST 732 report. European Science Foundation, ISBN 3-00-018312-4

Doury A (1960) Météorologie et contrôle des radiations en atmosphère libre au voisinage d’un site nucléaire. La météorologie_IV_60_451-471

Doury A (1981) Le vadémécum des transferts atmosphériques. rapport n_CEA-DSN- 440. CEA

Erbrink JJ (1995) Turbulent diffusion from tall stacks. The use of advanced boundary-layer meteorological parameters in the gaussian dispersion model “STACKS”. Ph.D. Thesis, Free University, Amsterdam, April 1995

Franke J, Hellsten A, Schlunzen H, Carissimo B (2007) Best practice guideline for the CFD simulation of flows in the urban environment. COST Action 732: quality assurance and improvement of microscale meteorological models

Gibson MM, Launder BE (1978) Ground effects on pressure fluctuations in the atmospheric boundary layer. J Fluid Mech 86:491–511

Gifford FA (1961) Use of routine meteorological observations for estimating atmospheric dispersion. Nucl Saf 2:47–57

Hanna S, Baja E (2009) A simple urban dispersion model tested with tracer data from Oklahoma City and Manhattan. Atmos Environ 43(2009):778–786

Hanna SR, Chang J (1993) Hybrid plume dispersion model (HPDM) improvements and testing at three field sites. Atmos Environ 27A:1491–1508

Hanna SR, Drivas PJ (1987) Guidelines for use of vapor cloud dispersion models. Center for chemical process safety. American Institute of Chemical Engineers, New York

Hanna SR, Strimaitis DG, Chang JC (1991) Hazard response modeling uncertainty (a quantitative method) volume I: user’s guide for software for evaluating hazardous gas dispersion models. Sigma Research Corporation, Westford

Holland JZ (1953) A Meteorological Survey of the Oak Ridge Area. U.S. Atomic Energy Commission Report No. ORO-99. U.S. Government Printing Office, Washington DC

Launder BE (1989) Second-moment closure and its use in modeling turbulent industrial flows. Int J Numer Methods Fluids 9:963–985

Launder BE (1989) Second-moment closure: present.. and future? Int J Heat Fluid Flow 10(4):282–300

Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

Le Quinio R (1964) Abaques pour le calcul de la pollution atmosphérique due aux effluents d’une source ponctuelle. Service de contrôle des radiations et de genie radioactif. Note CEA N_488

Leelossy A, Robert Meszaros R, Istvan Lagzi I (2011) Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima Nuclear Power Plant. J Environ Radioact 102:1117–1121

Leonard BP, Mokhtari S (1990) ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow. NASA TM 1-2568 (ICOMP-90-12), NASA Lewis Research Center

Leroy C, Maro D, Hébert D, Solier L, Rozet M, Le Cavelier S, Connan O (2010) A study of the atmospheric dispersion of a high release of krypton-85 above a complex coastal terrain, comparison with the predictions of Gaussian models. J Environ Radioact 101:937–944

Li Y, Stathopoulos T (1997) Numerical evaluation of wind-induced dispersion of pollutants around a building. J Wind Eng Ind Aerodyn 67&68:757–766

Li Y, Stathopoulos T (1998) Computational evaluation of pollutant dispersion around buildings: estimation of numerical errors. J Wind Eng Ind Aerodyn 77&78:619–630

Loos CC, Seppelt R, Meier-Bethke S, Schiemann J, Richter O (2003) Spatially explicit modelling of transgenic maize pollen dispersal and cross-pollination. J Theor Biol 22:241–255

MacKay C, McKee S, Mulholland AJ (2006) Diffusion and convection of gaseous and fine particulate from a chimney. IMA J Appl Math 71:670–691

Meroney RN, Leitl BM, Rafailidis S, Schatzmann M (1999) Wind-tunnel and numerical modeling of flow and dispersion about several building shapes. J Wind Eng Ind Aerodyn 81:333–345

Pasquill F (1961) Estimation of the dispersion of windborne material. Meteorol Mag 90:33–49

Pelliccioni A, Tirabassi T (2006) Air dispersion model and neural network: a new perspective for integrated models in the simulation of complex situations. Environ Model Softw 21:539–546

Raza SS, Avila R, Cervantes J (2001) A 3-D Lagrangian stochastic model for the meso-scale atmospheric dispersion applications. Nucl Eng Des 208:15–28

Riddle A, Carruthers D, Sharpe A, McHugh C, Stocker J (2004) Comparison between FLUENT and ADMS for atmospheric dispersion modeling. Atmos Environ 38:1029–1038

Schauberger G, Piringer M, Knauder W, Petz E (2011) Odour emissions from a waste treatment plant using an inverse dispersion technique. Atmos Environ 45:1639–1647

Singer IA, Smith ME (1966) Atmospheric dispersion at Brookhaven National laboratory. Int J Air Water Pollut 10:125–135

Turner DB (1967) Workbook of atmospheric dispersion estimates. Public Health Series. Publication 999-AP-26. Cincinnati, OH

Turner DB (1970) Workbook of atmospheric dispersion estimates. U.S. Environmental Protection Agency, Environment Health Series Air Pollution, 84, Research Triangle Park

Turner R, Hurst T (2001) Factors influencing volcanic ash dispersal from the 1995 and 1996 eruptions of Mount Ruapehu, New Zealand. J Appl Meteorol 40:56–69

USEPA (1995) Users guide to the Industrial Source Complex (ISC3) dispersion models (revised). Volume 1—user instructions. EPA-454/b-95-003a. US Environmental Protection Agency, Research Triangle Park, NC

USEPA (2003) AERMOD: latest features and evaluation results. EPA-454/R-03-003. US Environmental Protection Agency, Research Triangle Park, NC

Verwoerd WS (2011) New stochastic model for dispersion in heterogeneous porous media: 2. Gaussian plume transmission across stepwise velocity fluctuations. Appl Math Model 35:3355–3386

Vieira de Melo AM, Meri Santos J, Reis Junior NC (2012) Modelling of odour dispersion around a pig farm building complex using AERMOD and CALPUFF. Comparison with wind tunnel results. J. Build Environ 56:8–20

Wang X, McNamara KF (2006) Evaluation of CFD simulation using RANS turbulence models for building effects on pollutant dispersion. Environ Fluid Mech 6:181–202