New Tseng’s extragradient methods for pseudomonotone variational inequality problems in Hadamard manifolds
Tóm tắt
We propose Tseng’s extragradient methods for finding a solution of variational inequality problems associated with pseudomonotone vector fields in Hadamard manifolds. Under standard assumptions such as pseudomonotone and Lipschitz continuous vector fields, we prove that any sequence generated by the proposed methods converges to a solution of variational inequality problem, whenever it exits. Moreover, we give some numerical experiments to illustrate our main results.
Tài liệu tham khảo
Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Classics in Applied Mathematics, vol. 31. SIAM, Philadelphia (2000). https://doi.org/10.1137/1.9780898719451. Reprint of the 1980 original
Iusem, A.N., Nasri, M.: Korpelevich’s method for variational inequality problems in Banach spaces. J. Glob. Optim. 50(1), 59–76 (2011). https://doi.org/10.1007/s10898-010-9613-x
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. II. Springer Series in Operations Research. Springer, New York (2003)
Hu, Y.H., Song, W.: Weak sharp solutions for variational inequalities in Banach spaces. J. Math. Anal. Appl. 374(1), 118–132 (2011). https://doi.org/10.1016/j.jmaa.2010.08.062
Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018). https://doi.org/10.1016/j.cam.2018.03.019
Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms 78(4), 1045–1060 (2018). https://doi.org/10.1007/s11075-017-0412-z
Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Glob. Optim. 58(2), 341–350 (2014). https://doi.org/10.1007/s10898-013-0042-5
Korpelevič, G.M.: An extragradient method for finding saddle points and for other problems. Èkon. Mat. Metody 12(4), 747–756 (1976)
Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148(2), 318–335 (2011). https://doi.org/10.1007/s10957-010-9757-3
Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26(4–5), 827–845 (2011). https://doi.org/10.1080/10556788.2010.551536
Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61(9), 1119–1132 (2012). https://doi.org/10.1080/02331934.2010.539689
Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2), 431–446 (2000). https://doi.org/10.1137/S0363012998338806
Boţ, R.I., Csetnek, E.R., Vuong, P.T.: The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. Eur. J. Oper. Res. 287(1), 49–60 (2020). https://doi.org/10.1016/j.ejor.2020.04.035
Boţ, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171(2), 600–616 (2016). https://doi.org/10.1007/s10957-015-0730-z
Wang, F., Xu, H.K.: Weak and strong convergence theorems for variational inequality and fixed point problems with Tseng’s extragradient method. Taiwan. J. Math. 16(3), 1125–1136 (2012). https://doi.org/10.11650/twjm/1500406682
Thong, D.V., Van Hieu, D.: Strong convergence of extragradient methods with a new step size for solving variational inequality problems. Comput. Appl. Math. 38(3), Article ID 136 (2019). https://doi.org/10.1007/s40314-019-0899-0
Thong, D.V., Van Hieu, D.: New extragradient methods for solving variational inequality problems and fixed point problems. J. Fixed Point Theory Appl. 20(3), Article ID 129 (2018). https://doi.org/10.1007/s11784-018-0610-x
Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002). https://doi.org/10.1080/02331930290019413
Li, C., López, G., Martín-Márquez, V., Wang, J.H.: Resolvents of set-valued monotone vector fields in Hadamard manifolds. Set-Valued Var. Anal. 19(3), 361–383 (2011). https://doi.org/10.1007/s11228-010-0169-1
Ansari, Q.H., Babu, F., Li, X.B.: Variational inclusion problems in Hadamard manifolds. J. Nonlinear Convex Anal. 19(2), 219–237 (2018)
Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52(5), 1491–1498 (2003). https://doi.org/10.1016/S0362-546X(02)00266-3
Chen, J., Liu, S., Chang, X.: Tseng’s extragradient methods for variational inequality on Hadamard manifolds. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1695783
Ansari, Q.H., Babu, F.: Existence and boundedness of solutions to inclusion problems for maximal monotone vector fields in Hadamard manifolds. Optim. Lett. 14(3), 711–727 (2020). https://doi.org/10.1007/s11590-018-01381-x
Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(3), 663–683 (2009). https://doi.org/10.1112/jlms/jdn087
Wang, J.H., López, G., Martín-Márquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146(3), 691–708 (2010). https://doi.org/10.1007/s10957-010-9688-z
Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50(4), 2486–2514 (2012). https://doi.org/10.1137/110834962
Fan, J., Qin, X., Tan, B.: Tseng’s extragradient algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Appl. Anal., 1–14 (2020)
Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71(11), 5695–5706 (2009). https://doi.org/10.1016/j.na.2009.04.048
Tang, Gj., Zhou, Lw., Huang, Nj.: The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Optim. Lett. 7(4), 779–790 (2013). https://doi.org/10.1007/s11590-012-0459-7
Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31(1), 133–151 (2005). https://doi.org/10.1007/s10898-003-3780-y
Tang, Gj., Huang, Nj.: Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Glob. Optim. 54(3), 493–509 (2012). https://doi.org/10.1007/s10898-011-9773-3
Tang, Gj., Wang, X., Liu, Hw.: A projection-type method for variational inequalities on Hadamard manifolds and verification of solution existence. Optimization 64(5), 1081–1096 (2015). https://doi.org/10.1080/02331934.2013.840622
Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. Am. Math. Soc., Providence (1996). Translated from the 1992 Japanese original by the author
do Carmo, M.Pa.: Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser Boston, Boston (1992). https://doi.org/10.1007/978-1-4757-2201-7. Translated from the second Portuguese edition by Francis Flaherty
Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8390-9
Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999). https://doi.org/10.1007/978-3-662-12494-9
Da Cruz Neto, J.X., Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Glob. Optim. 35(1), 53–69 (2006). https://doi.org/10.1007/s10898-005-6741-9
Ansari, Q.H., Babu, F.: Proximal point algorithm for inclusion problems in Hadamard manifolds with applications. Optim. Lett. (2019). https://doi.org/10.1007/s11590-019-01483-0