New RNA species is produced by alternate polyadenylation following rearrangement associated withCAD gene amplification

Springer Science and Business Media LLC - Tập 12 - Trang 339-350 - 1986
Judy L. Meinkoth1, Edith Legouy2, Olivier Brison2, Geoffrey M. Wahl1
1Molecular Biology and Virology Laboratory, The Salk Institute, La Jolla
2Laboratoire d'Oncologie Moleculaire-UA 1158 CNRS, Institut Gustave-Roussy, Villejuif Cedex, France

Tóm tắt

Mammalian cells selected to resist N-(phosphonacetyl)-L-aspartate (PALA) contain amplified copies of the CAD gene. While a single 7.9-kb mRNA species is detected in PALA-sensitive and most PALA-resistant cell lines, two RNA species (7.9 and 10.2 kb) are detected in two related drug-resistant mutants presumably derived from the same parental cell. In this report we show that the 10.2-kb RNA is produced as a direct consequence of a sequence rearrangement adjacent to the 3′ end of the CAD gene in these cell lines. A CAD gene containing the sequence rearrangement was cloned from one of these lines and found to produce both RNA species when transfected into CAD-deficient cells. DNA sequencing and S1 analysis demonstrate that the 10.2-kb RNA is produced by alternative polyadenylation rather than by alternative splicing. Sequence analysis also reveals that several consensus poly(A) addition signals (AATAAA) were brought into close proximity to the CAD gene by virtue of the rearrangement. While sequences adjacent to each of the polyadenylation signals contain additional features postulated to be important for the selection of the site of poly (A) addition, S1 mapping analysis indicates that only one of the polyadenylation signals is used. A comparison of all of these sites suggests that multiple sequence motifs are required to form a functional polyadenylation and cleavage signal.

Tài liệu tham khảo

Hamlin, J.L., Milbrandt, J.D., Heintz, N.H., and Azizkhan, J.C. (1984).Int. Rev. Cytol. 90: 31–82. Stark, G.R., and Wahl, G.M. (1984).Annu. Rev. Biochem. 53: 447–491. Kaufman, R.J., Brown, P.C., and Schimke, R.T. (1979).Proc. Natl. Acad. Sci. U.S.A. 76: 5669–5673. Brown, P.C., Beverley, S.M., and Schimke, R.T. (1981).Mol. Cell. Biol. 1: 1077–1083. Montoya-Zavala, M., and Hamlin, J.L. (1985).Mol. Cell. Biol. 5: 619–627. Wahl, G.M., Padgett, R.A., and Stark, G.R. (1979).J. Biol. Chem. 254: 8679–8689. Padgett, R.A., Wahl, G.M., and Stark, G.R. (1982).Mol. Cell Biol. 2: 293–301. Ardeshir, F., Guilotto, E., Zieg, J., Brison, O., Liao, W.S.L., and Stark, G.R. (1983).Mol. Cell. Biol. 3: 2076–2088. Zieg, J., Clayton, C.E., Ardeshir, F., Giulotto, E., Swyryd, E.A., and Stark, G.R. (1983).Mol. Cell. Biol. 3: 2089–2098. Tyler-Smith, C., and Alderson, T. (1981).J. Mol. Biol. 153: 203–218. Debatisse, M., Hyrien, O., Petit-Koskas, E., Robert de Saint-Vincent, B., and Buttin, G. (1986).Mol. Cell. Biol. 6: 1776–1781. Berget, S.M. (1984).Nature 309: 179–182. Le Moullec, J.M., Akusjarvi, G., Stalkandske, P., Pettersson, U., Chambraud, B., Gilardi, P., Nasri, M., and Perricaudet, M. (1983).J. Virol. 48: 127–134. Birnstiel, M.L., Busslinger, M., and Strub, K. (1985).Cell 41: 349–359. Kempe, T.D., Swyryd, E.A., Bruist, M., and Stark, G.R. (1976).Cell 9: 541–550. Rave, N., Crkvenjakov, R., and Boedtker, H. (1979).Nucleic Acids Res. 6: 3559–3567. Meinkoth, J.L., and Wahl, G.M. (1984).Anal. Biochem. 138: 267–284. Robert de Saint-Vincent, B., Delbruck, S., Eckhart, W., Meinkoth, J., Vitto, L., and Wahl, G.M. (1981).Cell 27: 267–277. Carnright, D., and Patterson, D. (1977).Somat. Cell Genet. 3: 483–495. Schaffner, W. (1980).Proc. Natl. Acad. Sci. U.S.A. 77: 2163–2167. Chirgwin, J.M., Przbyla, A.E., MacDonald, R.J., and Rutter, W.J. (1979).Biochemistry 18: 5294–5299. Padgett, R.A., Wahl, G.M., Coleman, P.F., and Stark, G.R. (1979).J. Biol. Chem. 254: 974–980. Favaloro, J., Treisman, R., and Kamen, R. (1980).Methods Enzymol. 65: 718–749. Maniatis, T., Fritsch, E.F., and Sambrook, T. (1982). InMolecular Cloning, (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York), pp. 113–116. Sanger, F., Nicklen, S., and Coulson, A.R. (1977).Proc. Natl. Acad. Sci. U.S.A. 74: 5463–5467. Proudfoot, N.J., and Brownlee, G.G. (1976).Nature 263: 211–214. Higgs, D.R., Goodbourn, S.E.Y., Lamb, J., Clegg, J.B., Weatherall, D.J., and Proudfoot, N.J. (1983).Nature 306: 398–400. Nevins, J.R., and Darnell, J.E. (1978).Cell 15: 1477–1493. Gil, A., and Proudfoot, N.J. (1984).Nature 312: 473–474. McDevitt, M.A., Imperiale, M.J., Ali, H., and Nevis, J.R. (1984).Cell 37: 993–999. McLauchlan, J., Gaffney, D., Whitton, J.L., and Clements, J.B. (1985).Nucleic Acids Res. 13: 1347–1368. Sadofsky, M., and Alwine, J.C. (1984).Mol. Cell. Biol. 4: 1460–1468. Simonsen, C.C., and Levinson, A.D. (1983).Mol. Cell. Biol. 3: 2250–2258. Hart, R.P., McDevitt, M.A., Ali, H., and Nevins, J.R. (1985).Mol. Cell. Biol. 5: 2975–2983. Birchmeier, C., Grosschedl, R., and Birnstiel, M.L. (1982).Cell 28: 739–745. Kronenberg, H.M., Roberts, B.E., and Efstratiadis, A. (1979).Nucleic Acids Res. 6: 153–166. Mushinski, J.F., Potter, M., Bauer, S.R., and Reddy, E.P. (1983).Science 220: 795–798. Stanton, L.W., Watt, R., and Marcu, K.B. (1983).Nature 303: 401–406.