New Pathways and Processes in the Global Nitrogen Cycle

Annual Review of Ecology, Evolution, and Systematics - Tập 43 Số 1 - Trang 407-428 - 2012
Bo Thamdrup1,2
1Nordcee
2Nordic Center for Earth Evolution, Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark;

Tóm tắt

Our understanding of the players and pathways of the global nitrogen cycle has advanced substantially over recent years with discoveries of several new groups of organisms and new types of metabolism. This review focuses on recently discovered processes that add new functionality to the nitrogen cycle and on the organisms that perform these functions. The processes include denitrification and other dissimilatory nitrogen transformations in eukaryotes, anaerobic ammonium oxidation, and anaerobic methane oxidation with nitrite. Of these, anaerobic ammonium oxidation coupled to nitrite reduction by anammox bacteria has been well documented in natural environments and constitutes an important sink for fixed nitrogen. Benthic foraminifera also contribute substantially to denitrification in some sediments, in what potentially represents an ancestral eukaryotic metabolism. The ecophysiology of the novel organisms and their interactions with classical types of nitrogen metabolism are important for understanding the nitrogen cycle and its tight links to the cycling of carbon today, in the past, and in the future.

Từ khóa


Tài liệu tham khảo

Baas Becking LGM. 1934.Geobiologie, of Inleiding tot de Milieukunde. The Hague: WP van Stockum & Zoon. 263 pp.

10.1130/G22470.1

10.1038/ismej.2011.171

10.1016/B978-0-12-387046-9.00002-5

10.1111/j.1758-2229.2010.00233.x

10.1357/002224091784995710

10.1126/science.1186120

10.1515/9781501509551

10.4319/lo.1988.33.4_part_2.0725

10.1146/annurev-marine-120709-142802

10.1016/j.soilbio.2005.03.027

10.5194/bg-4-233-2007

10.3989/scimar.2001.65s285

10.1007/s10533-007-9165-4

10.1038/nature01526

10.1128/AEM.68.8.3802-3808.2002

10.1016/j.resmic.2005.01.011

10.4319/lo.2012.57.5.1331

10.1128/AEM.00340-11

10.4319/lo.2011.56.1.0279

10.1016/0012-821X(80)90150-8

10.4319/lo.2009.54.5.1643

10.1038/nature08883

10.1111/j.1462-2920.2008.01724.x

10.1128/AEM.00067-09

10.1111/j.1365-2427.1985.tb00205.x

10.1038/303333a0

10.4319/lo.2009.54.3.0723

10.1126/science.1139478

10.1016/B978-0-12-372522-6.00001-3

10.1038/nature06592

10.1073/pnas.1109000108

10.1016/j.mito.2011.03.005

10.1128/AEM.71.2.1066-1071.2005

10.1016/j.jembe.2008.02.015

10.1042/BST20110711

10.1111/j.1758-2229.2009.00083.x

Huettel M, 1996, Appl. Environ. Microbiol., 62, 1863, 10.1128/aem.62.6.1863-1872.1996

10.1016/S0016-7037(98)00285-3

10.1016/j.watres.2003.08.024

10.4319/lo.2008.53.1.0023

10.1038/ismej.2011.44

10.1128/AEM.01898-06

10.1080/10409230902722783

10.1371/journal.pone.0029299

10.1073/pnas.1015744108

10.1016/B978-0-12-381294-0.00004-3

Kartal B, Keltjens JT, Jetten MSM. 2011b. Metabolism and genomics of anammox bacteria. See Ward et al. 2001, pp. 181–200

10.1038/nature10453

10.1128/AEM.02536-08

10.1074/jbc.270.8.4146

10.5194/bg-7-2327-2010

10.1111/j.1574-6941.2010.01010.x

10.1038/nature03911

10.4319/lo.2008.53.3.1025

10.1073/pnas.0502088102

10.1038/nature01472

10.1146/annurev-marine-120709-142814

10.1073/pnas.0812444106

10.2136/sssaj2002.1540

10.1038/nature07588

Levin LA, 2003, Oceanogr. Mar. Biol., 41, 1

10.1128/AEM.05539-11

10.1016/S0016-7037(97)00239-1

10.1038/nature08465

10.1038/nature02824

10.1021/es201243t

10.1038/nature10415

10.1111/j.1574-6941.2008.00495.x

10.1016/0168-6496(94)00081-7

10.1007/s10533-010-9478-6

Nicol GW, Leininger S, Schleper C. 2011. Distribution and activity of ammonia-oxidizing archaea in natural environments. See Ward et al. 2011, pp. 157–78

10.1073/pnas.0908440107

10.3354/meps08805

10.1111/j.1574-6968.2010.02187.x

10.1128/AEM.68.4.1893-1900.2002

10.1016/j.gca.2011.09.023

10.1038/nature04617

Richards FA, 1965, Advances in Water Pollution Research, 3, 215

10.1038/nature05070

10.5194/bg-8-1779-2011

10.1038/ngeo847

10.1128/AEM.72.3.2102-2109.2006

10.1016/B978-0-12-381045-8.00001-1

10.1099/mic.0.036004-0

10.1130/G30238A.1

10.1111/j.1462-2920.2006.01074.x

10.1007/s00027-010-0148-5

10.1111/j.1574-6941.2010.01036.x

10.1146/annurev.micro.55.1.105

10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2

10.1111/j.1574-6968.1992.tb05331.x

10.1097/SS.0b013e3181988fbf

10.1111/j.1574-6976.2002.tb00616.x

10.1038/nature01128

10.5194/bg-8-779-2011

10.1080/10889860802690562

10.1016/j.soilbio.2011.06.014

10.1038/22749

10.1038/nature04647

Stumm W, 1981, Aquatic Chemistry

10.1016/j.watres.2008.10.055

10.1271/bbb.80487

10.1016/S0016-7037(00)00496-8

10.1128/AEM.68.3.1312-1318.2002

10.1002/9780470281840.ch14

10.4319/lo.2006.51.5.2145

10.1196/annals.1419.000

10.1016/S0968-0004(02)02193-X

10.1111/j.1462-2920.2005.00906.x

Trimmer M, Engström P. 2011. Distribution, activity, and ecology of anammox bacteria in aquatic environments. See Ward et al. 2011, pp. 201–35

10.1111/j.1574-6968.1998.tb13262.x

10.1093/oxfordjournals.jbchem.a003137

10.1099/00221287-143-7-2415

10.1111/j.1462-2920.2011.02450.x

10.1007/BF00002772

Ward BB, 2011, Nitrification, 10.1128/9781555817145

10.1038/nature08276

10.4319/lo.2007.52.4.1698

10.1264/jsme2.ME10184

10.1016/j.tim.2010.12.004

10.1038/35088063

10.1074/jbc.M109096200

10.1007/s002030000231

10.1271/bbb.100482

10.1038/ismej.2011.63